{"title":"基于OpenCL FPGA平台的指数突触电导Hodgkin和Huxley神经元随机网络研究","authors":"Zheming Jin, H. Finkel","doi":"10.1109/FCCM.2019.00057","DOIUrl":null,"url":null,"abstract":"We choose a random network of Hodgkin–Huxley (HH) neurons with exponential synaptic conductance as a study of accelerating the simulation of networks of spiking neurons on an FPGA. Focused on the conductance-based HH (COBAHH) benchmark, we execute the benchmark on a general-purpose simulator for spiking neural networks, identify a computationally intensive kernel in the generated C++ code, convert the kernel to a portable OpenCL kernel, and describe the kernel optimizations which can reduce the resource utilizations and improve the kernel performance. We evaluate the kernel on an Intel Arria 10 based FPGA platform, an Intel Xeon 16-core CPU, and an NVIDIA Tesla P100 GPU. FPGAs are promising for the simulation of spiking neuron network.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring the Random Network of Hodgkin and Huxley Neurons with Exponential Synaptic Conductances on OpenCL FPGA Platform\",\"authors\":\"Zheming Jin, H. Finkel\",\"doi\":\"10.1109/FCCM.2019.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We choose a random network of Hodgkin–Huxley (HH) neurons with exponential synaptic conductance as a study of accelerating the simulation of networks of spiking neurons on an FPGA. Focused on the conductance-based HH (COBAHH) benchmark, we execute the benchmark on a general-purpose simulator for spiking neural networks, identify a computationally intensive kernel in the generated C++ code, convert the kernel to a portable OpenCL kernel, and describe the kernel optimizations which can reduce the resource utilizations and improve the kernel performance. We evaluate the kernel on an Intel Arria 10 based FPGA platform, an Intel Xeon 16-core CPU, and an NVIDIA Tesla P100 GPU. FPGAs are promising for the simulation of spiking neuron network.\",\"PeriodicalId\":116955,\"journal\":{\"name\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2019.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
我们选择了一个具有指数突触电导的霍奇金-赫胥黎(HH)神经元随机网络作为在FPGA上加速尖峰神经元网络模拟的研究。以基于电导的HH (COBAHH)基准测试为重点,在脉冲神经网络的通用模拟器上执行该基准测试,在生成的c++代码中识别计算密集型内核,将内核转换为可移植的OpenCL内核,并描述了可以降低资源利用率和提高内核性能的内核优化。我们在基于Intel Arria 10的FPGA平台、Intel Xeon 16核CPU和NVIDIA Tesla P100 GPU上评估了内核。fpga在脉冲神经元网络的仿真中具有广阔的应用前景。
Exploring the Random Network of Hodgkin and Huxley Neurons with Exponential Synaptic Conductances on OpenCL FPGA Platform
We choose a random network of Hodgkin–Huxley (HH) neurons with exponential synaptic conductance as a study of accelerating the simulation of networks of spiking neurons on an FPGA. Focused on the conductance-based HH (COBAHH) benchmark, we execute the benchmark on a general-purpose simulator for spiking neural networks, identify a computationally intensive kernel in the generated C++ code, convert the kernel to a portable OpenCL kernel, and describe the kernel optimizations which can reduce the resource utilizations and improve the kernel performance. We evaluate the kernel on an Intel Arria 10 based FPGA platform, an Intel Xeon 16-core CPU, and an NVIDIA Tesla P100 GPU. FPGAs are promising for the simulation of spiking neuron network.