基于双参数化的快速双聚类

Pål Grønås Drange, F. Reidl, Fernando Sánchez Villaamil, S. Sikdar
{"title":"基于双参数化的快速双聚类","authors":"Pål Grønås Drange, F. Reidl, Fernando Sánchez Villaamil, S. Sikdar","doi":"10.4230/LIPIcs.IPEC.2015.402","DOIUrl":null,"url":null,"abstract":"We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. \nMisra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. \nHowever, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time $2^{5 \\sqrt{pk}} + O(n+m)$ for p-Starforest Editing and $2^{O(p \\sqrt{k} \\log(pk))} + O(n+m)$ for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant. \nOur results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fast Biclustering by Dual Parameterization\",\"authors\":\"Pål Grønås Drange, F. Reidl, Fernando Sánchez Villaamil, S. Sikdar\",\"doi\":\"10.4230/LIPIcs.IPEC.2015.402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. \\nMisra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. \\nHowever, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time $2^{5 \\\\sqrt{pk}} + O(n+m)$ for p-Starforest Editing and $2^{O(p \\\\sqrt{k} \\\\log(pk))} + O(n+m)$ for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant. \\nOur results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2015.402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2015.402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了两个聚类问题,星林编辑问题,添加和删除边以获得星的不相交并的问题,以及泛化双聚类编辑问题。我们证明,除了np困难之外,没有一个问题可以在次指数时间内解决,除非指数时间假设失效。Misra, Panolan和Saurabh (MFCS 2013)认为,在解决方案中引入连接组件数量的限制不应该使问题变得更容易:特别是,他们认为用于编辑到固定数量的簇的次指数时间算法(p-Cluster editing)由Fomin等人(J. Comput)。系统。科学。, 80(7) 2014)是一个例外,而不是规则。这里,p是次要参数,限定了溶液中组分的数量。然而,在限定解决方案中的星星或双星的数量后,我们得到了运行时间为$2^{5 \sqrt{pk}} + O(n+m)$的p-Starforest编辑算法和$2^{O(p \sqrt{k} \log(pk))} + O(n+m)$的p-Bicluster编辑算法。对于更一般的t-部p-簇编辑,我们得到了类似的结果。对于固定数量的簇,这是k的次指数,因为p被认为是一个常数。我们的结果使多变量次指数时间算法的数量均匀化,并给出理由相信这一领域值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Biclustering by Dual Parameterization
We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time $2^{5 \sqrt{pk}} + O(n+m)$ for p-Starforest Editing and $2^{O(p \sqrt{k} \log(pk))} + O(n+m)$ for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信