基于自动化超参数调谐深度学习的配电系统无功优化模型

S. Sivasakthi, K. M. Devi, P. Yamunaa, N. Mahendran, R. Prakash, A. Vigneshwar, B. Jegajothi
{"title":"基于自动化超参数调谐深度学习的配电系统无功优化模型","authors":"S. Sivasakthi, K. M. Devi, P. Yamunaa, N. Mahendran, R. Prakash, A. Vigneshwar, B. Jegajothi","doi":"10.1109/ICAISS55157.2022.10010960","DOIUrl":null,"url":null,"abstract":"With a great quantity of Electric Vehicles and Distributed Generator (DG) complied in the power distribution system, the complications of distribution systems' function are higher, which generates the superior need for online Reactive Power Optimization (RPO). The RPO is a distribution network that could enhance the quality of voltage and the economical function, and diminish the power losses of a dispersal network. RPO could understand rational dispersal of reactive power in the dispersal network and decrease the node voltage deviations and power losses. Currently, only a few heuristic intellectual methods are broadly employed for RPO. Therefore, this article introduces a new Jellyfish Search Optimization with Deep Stacked Autoencoder (JSO-DSAE) model for RRO in power distribution systems. The proposed JSO-DSAE model enables the DSAE model to receive previous data from DGs to identify the connection among power control and system characteristics. To bolster the performance of the JSO-DSAE algorithm, the JSO method is used. The experimental validation of the JSO-DSAE model is tested and the outcomes are examined over distinct aspects. The simulation outcome demonstrated the supremacy of the JSO-DSAE model over the recent approaches.","PeriodicalId":243784,"journal":{"name":"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Hyperparameter Tuned Deep Learning Enabled Reactive Power Optimization Model for Power Distribution System\",\"authors\":\"S. Sivasakthi, K. M. Devi, P. Yamunaa, N. Mahendran, R. Prakash, A. Vigneshwar, B. Jegajothi\",\"doi\":\"10.1109/ICAISS55157.2022.10010960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a great quantity of Electric Vehicles and Distributed Generator (DG) complied in the power distribution system, the complications of distribution systems' function are higher, which generates the superior need for online Reactive Power Optimization (RPO). The RPO is a distribution network that could enhance the quality of voltage and the economical function, and diminish the power losses of a dispersal network. RPO could understand rational dispersal of reactive power in the dispersal network and decrease the node voltage deviations and power losses. Currently, only a few heuristic intellectual methods are broadly employed for RPO. Therefore, this article introduces a new Jellyfish Search Optimization with Deep Stacked Autoencoder (JSO-DSAE) model for RRO in power distribution systems. The proposed JSO-DSAE model enables the DSAE model to receive previous data from DGs to identify the connection among power control and system characteristics. To bolster the performance of the JSO-DSAE algorithm, the JSO method is used. The experimental validation of the JSO-DSAE model is tested and the outcomes are examined over distinct aspects. The simulation outcome demonstrated the supremacy of the JSO-DSAE model over the recent approaches.\",\"PeriodicalId\":243784,\"journal\":{\"name\":\"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAISS55157.2022.10010960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISS55157.2022.10010960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大量的电动汽车和分布式发电机(DG)进入配电系统,配电系统功能的复杂性越来越高,对在线无功优化(RPO)提出了更高的要求。RPO是一种能够提高配电网电压质量、提高配电网经济性能、降低配电网功率损耗的配电网。RPO可以理解无功功率在分散网络中的合理分布,降低节点电压偏差和功率损耗。目前,只有少数几种启发式智能方法被广泛应用于RPO。为此,本文提出了一种新的基于深度堆叠自编码器的水母搜索优化(JSO-DSAE)配电系统RRO模型。提出的JSO-DSAE模型使DSAE模型能够接收来自dg的先前数据,从而识别功率控制与系统特性之间的联系。为了提高JSO- dsae算法的性能,采用了JSO方法。测试了JSO-DSAE模型的实验验证,并从不同的方面检查了结果。仿真结果表明,JSO-DSAE模型优于最近的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Hyperparameter Tuned Deep Learning Enabled Reactive Power Optimization Model for Power Distribution System
With a great quantity of Electric Vehicles and Distributed Generator (DG) complied in the power distribution system, the complications of distribution systems' function are higher, which generates the superior need for online Reactive Power Optimization (RPO). The RPO is a distribution network that could enhance the quality of voltage and the economical function, and diminish the power losses of a dispersal network. RPO could understand rational dispersal of reactive power in the dispersal network and decrease the node voltage deviations and power losses. Currently, only a few heuristic intellectual methods are broadly employed for RPO. Therefore, this article introduces a new Jellyfish Search Optimization with Deep Stacked Autoencoder (JSO-DSAE) model for RRO in power distribution systems. The proposed JSO-DSAE model enables the DSAE model to receive previous data from DGs to identify the connection among power control and system characteristics. To bolster the performance of the JSO-DSAE algorithm, the JSO method is used. The experimental validation of the JSO-DSAE model is tested and the outcomes are examined over distinct aspects. The simulation outcome demonstrated the supremacy of the JSO-DSAE model over the recent approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信