Voronoi图和柏林噪声用于显微镜扫描中不规则伪像的模拟

Atef Alreni, G. Momcheva, Stoyan P. Pavlov
{"title":"Voronoi图和柏林噪声用于显微镜扫描中不规则伪像的模拟","authors":"Atef Alreni, G. Momcheva, Stoyan P. Pavlov","doi":"10.5220/0010833000003123","DOIUrl":null,"url":null,"abstract":"Artefacts are a common occurrence in microscopic images and scans used in life science research. The artefacts may be regular and irregular and arise from different sources: distortions of the illumination field, optical aberrations, foreign particles in the illumination and optical path, errors, irregularities during the processing and staining phases, et cetera. While several computational approaches for dealing with patterned distortions exist, there is no universal, efficient, reliable, and facile method for removing irregular artefacts. This leaves life scientists within cumbersome predicaments, wastes valuable time, and may alter the analysis results. In this article, the authors outline a systematic way to introduce synthetic irregular artefacts in microscopic scans via Perlin Noise and Voronoi Diagrams. The reasoning behind such a task is to produce pairs of “successful” and manufactured “failed” image counterparts to be used as training pairs in an artificial neural network tuned for artefact removal. At the moment, the outlined method only works for grayscale","PeriodicalId":162397,"journal":{"name":"Bioimaging (Bristol. Print)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voronoi Diagrams and Perlin Noise for Simulation of Irregular Artefacts in Microscope Scans\",\"authors\":\"Atef Alreni, G. Momcheva, Stoyan P. Pavlov\",\"doi\":\"10.5220/0010833000003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artefacts are a common occurrence in microscopic images and scans used in life science research. The artefacts may be regular and irregular and arise from different sources: distortions of the illumination field, optical aberrations, foreign particles in the illumination and optical path, errors, irregularities during the processing and staining phases, et cetera. While several computational approaches for dealing with patterned distortions exist, there is no universal, efficient, reliable, and facile method for removing irregular artefacts. This leaves life scientists within cumbersome predicaments, wastes valuable time, and may alter the analysis results. In this article, the authors outline a systematic way to introduce synthetic irregular artefacts in microscopic scans via Perlin Noise and Voronoi Diagrams. The reasoning behind such a task is to produce pairs of “successful” and manufactured “failed” image counterparts to be used as training pairs in an artificial neural network tuned for artefact removal. At the moment, the outlined method only works for grayscale\",\"PeriodicalId\":162397,\"journal\":{\"name\":\"Bioimaging (Bristol. Print)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging (Bristol. Print)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010833000003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging (Bristol. Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010833000003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工制品是生命科学研究中使用的显微图像和扫描中常见的现象。所述人工制品可以是规则的和不规则的,并且产生于不同的来源:照明场的畸变、光学像差、照明和光路中的外来颗粒、错误、加工和染色阶段的不规则等。虽然存在几种处理图案畸变的计算方法,但没有一种通用的、有效的、可靠的、简便的方法来去除不规则的伪影。这使生命科学家陷入麻烦的困境,浪费宝贵的时间,并可能改变分析结果。在本文中,作者概述了一种系统的方法,通过Perlin噪声和Voronoi图在显微扫描中引入合成不规则伪影。这种任务背后的原因是产生“成功”和“失败”的图像对对,作为人工神经网络的训练对,用于去除伪影。目前,轮廓法只适用于灰度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voronoi Diagrams and Perlin Noise for Simulation of Irregular Artefacts in Microscope Scans
Artefacts are a common occurrence in microscopic images and scans used in life science research. The artefacts may be regular and irregular and arise from different sources: distortions of the illumination field, optical aberrations, foreign particles in the illumination and optical path, errors, irregularities during the processing and staining phases, et cetera. While several computational approaches for dealing with patterned distortions exist, there is no universal, efficient, reliable, and facile method for removing irregular artefacts. This leaves life scientists within cumbersome predicaments, wastes valuable time, and may alter the analysis results. In this article, the authors outline a systematic way to introduce synthetic irregular artefacts in microscopic scans via Perlin Noise and Voronoi Diagrams. The reasoning behind such a task is to produce pairs of “successful” and manufactured “failed” image counterparts to be used as training pairs in an artificial neural network tuned for artefact removal. At the moment, the outlined method only works for grayscale
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信