双曲平面的直角六边形平铺

R. Kenyon
{"title":"双曲平面的直角六边形平铺","authors":"R. Kenyon","doi":"10.1515/9780691185897-009","DOIUrl":null,"url":null,"abstract":"We study isometry-invariant probability measures on the space $\\Omega$ of tilings of the hyperbolic plane with right-angled hexagons of varying shapes. We prove that, for each measure $\\mu$ in a certain natural family of measures on right-angled hexagons, there is an isometry-invariant measure on $\\Omega$ whose marginal distribution on tiles is $\\mu$.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Right-Angled Hexagon Tilings of the Hyperbolic Plane\",\"authors\":\"R. Kenyon\",\"doi\":\"10.1515/9780691185897-009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study isometry-invariant probability measures on the space $\\\\Omega$ of tilings of the hyperbolic plane with right-angled hexagons of varying shapes. We prove that, for each measure $\\\\mu$ in a certain natural family of measures on right-angled hexagons, there is an isometry-invariant measure on $\\\\Omega$ whose marginal distribution on tiles is $\\\\mu$.\",\"PeriodicalId\":404905,\"journal\":{\"name\":\"What's Next?\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"What's Next?\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9780691185897-009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780691185897-009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有不同形状的直角六边形的双曲平面的平铺空间$\Omega$上的等距不变概率测度。证明了直角六边形上某自然测度族中的每个测度$\mu$,在$\Omega$上存在一个等距不变测度,其在瓷砖上的边际分布为$\mu$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Right-Angled Hexagon Tilings of the Hyperbolic Plane
We study isometry-invariant probability measures on the space $\Omega$ of tilings of the hyperbolic plane with right-angled hexagons of varying shapes. We prove that, for each measure $\mu$ in a certain natural family of measures on right-angled hexagons, there is an isometry-invariant measure on $\Omega$ whose marginal distribution on tiles is $\mu$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信