基于支持向量机的垃圾邮件过滤行为分析及准确率比较

Shashank Mishra, D. Malathi
{"title":"基于支持向量机的垃圾邮件过滤行为分析及准确率比较","authors":"Shashank Mishra, D. Malathi","doi":"10.1109/ICCMC.2017.8282698","DOIUrl":null,"url":null,"abstract":"The Increase use of emails generated a need of spam filter. Machine learning algorithm forms a potential method to classify email at a very successful rate. In this paper we will use SVM classifier to classify emails and also note behavior of training and test accuracy with change in parameter C. Informally, the C parameter is a positive value that controls the penalty for misclassified training examples. Description Of algorithm is presented with comparison graph of different values of C to come to a conclusion about high bias and variance.","PeriodicalId":163288,"journal":{"name":"2017 International Conference on Computing Methodologies and Communication (ICCMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Behaviour analysis of SVM based spam filtering using various parameter values and accuracy comparison\",\"authors\":\"Shashank Mishra, D. Malathi\",\"doi\":\"10.1109/ICCMC.2017.8282698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Increase use of emails generated a need of spam filter. Machine learning algorithm forms a potential method to classify email at a very successful rate. In this paper we will use SVM classifier to classify emails and also note behavior of training and test accuracy with change in parameter C. Informally, the C parameter is a positive value that controls the penalty for misclassified training examples. Description Of algorithm is presented with comparison graph of different values of C to come to a conclusion about high bias and variance.\",\"PeriodicalId\":163288,\"journal\":{\"name\":\"2017 International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC.2017.8282698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2017.8282698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电子邮件使用量的增加产生了对垃圾邮件过滤器的需求。机器学习算法形成了一种潜在的方法,以非常高的成功率分类电子邮件。在本文中,我们将使用SVM分类器对电子邮件进行分类,并通过参数C的变化来记录训练和测试准确性的行为。非正式地,C参数是一个正值,它控制对错误分类的训练样例的惩罚。通过不同C值的对比图对算法进行了描述,得出了高偏差和高方差的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behaviour analysis of SVM based spam filtering using various parameter values and accuracy comparison
The Increase use of emails generated a need of spam filter. Machine learning algorithm forms a potential method to classify email at a very successful rate. In this paper we will use SVM classifier to classify emails and also note behavior of training and test accuracy with change in parameter C. Informally, the C parameter is a positive value that controls the penalty for misclassified training examples. Description Of algorithm is presented with comparison graph of different values of C to come to a conclusion about high bias and variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信