支持向量是一种适应车道标记跟踪的方法:迈向智能交通系统的一步

A. Ali, S. Afghani
{"title":"支持向量是一种适应车道标记跟踪的方法:迈向智能交通系统的一步","authors":"A. Ali, S. Afghani","doi":"10.1109/ICET.2005.1558871","DOIUrl":null,"url":null,"abstract":"The paper describes a novel approach for tracking white lane markers with the view of driving assistance. The presented technique detects the lane markers using a raster scan approach. The detected data points are then converted to functional support vectors using a kernel function derived from the data and are compared with a trained model of similar vectors stored in a d-dimensional tree using a knearest neighbor classifier. Experimental results confirm the validity ofthe presented approach in different lightening conditions and scenarios. The presented technique is capable of detecting vehicles at fourteen frames per sec which makes it idealfor real time pre-crash sensing.","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Support vectors a way to adapt for lane marker tracking: a step towards intelligent transportation systems\",\"authors\":\"A. Ali, S. Afghani\",\"doi\":\"10.1109/ICET.2005.1558871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a novel approach for tracking white lane markers with the view of driving assistance. The presented technique detects the lane markers using a raster scan approach. The detected data points are then converted to functional support vectors using a kernel function derived from the data and are compared with a trained model of similar vectors stored in a d-dimensional tree using a knearest neighbor classifier. Experimental results confirm the validity ofthe presented approach in different lightening conditions and scenarios. The presented technique is capable of detecting vehicles at fourteen frames per sec which makes it idealfor real time pre-crash sensing.\",\"PeriodicalId\":222828,\"journal\":{\"name\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2005.1558871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文从辅助驾驶的角度出发,提出了一种跟踪白色车道标志的新方法。该技术采用栅格扫描方法检测车道标记。然后使用从数据派生的核函数将检测到的数据点转换为功能支持向量,并使用最近邻分类器与存储在d维树中的相似向量的训练模型进行比较。实验结果证实了该方法在不同光照条件和场景下的有效性。所提出的技术能够以每秒14帧的速度检测车辆,这使其成为实时碰撞前感知的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support vectors a way to adapt for lane marker tracking: a step towards intelligent transportation systems
The paper describes a novel approach for tracking white lane markers with the view of driving assistance. The presented technique detects the lane markers using a raster scan approach. The detected data points are then converted to functional support vectors using a kernel function derived from the data and are compared with a trained model of similar vectors stored in a d-dimensional tree using a knearest neighbor classifier. Experimental results confirm the validity ofthe presented approach in different lightening conditions and scenarios. The presented technique is capable of detecting vehicles at fourteen frames per sec which makes it idealfor real time pre-crash sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信