新闻标题的情感分析与主题建模

Vijay N. Yadav, S. Shakya
{"title":"新闻标题的情感分析与主题建模","authors":"Vijay N. Yadav, S. Shakya","doi":"10.36548/jucct.2022.3.008","DOIUrl":null,"url":null,"abstract":"Sentiment analysis and topic modeling has wide range of applications from medical to entertainment industry, corporates, politics and so on. News media play vital role in shaping the views of public towards any product or people. The dataset used for this work is news headlines dataset of one of the leading new portals of India i.e., Times of India. This research aims to perform comparative study of both supervised and unsupervised learning for text analysis and use the best performing models in both the category for prediction of sentiment and topic classification of news headlines. For sentiment analysis, supervised techniques like Machine learning ensemble model and Bi-LSTM have used. Similarly, unsupervised techniques like LDA (Latent Dirichlet Allocation) and LSA (Latent Semantic Analysis) have been for topic modeling.","PeriodicalId":443052,"journal":{"name":"Journal of Ubiquitous Computing and Communication Technologies","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sentiment Analysis and Topic Modeling on News Headlines\",\"authors\":\"Vijay N. Yadav, S. Shakya\",\"doi\":\"10.36548/jucct.2022.3.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis and topic modeling has wide range of applications from medical to entertainment industry, corporates, politics and so on. News media play vital role in shaping the views of public towards any product or people. The dataset used for this work is news headlines dataset of one of the leading new portals of India i.e., Times of India. This research aims to perform comparative study of both supervised and unsupervised learning for text analysis and use the best performing models in both the category for prediction of sentiment and topic classification of news headlines. For sentiment analysis, supervised techniques like Machine learning ensemble model and Bi-LSTM have used. Similarly, unsupervised techniques like LDA (Latent Dirichlet Allocation) and LSA (Latent Semantic Analysis) have been for topic modeling.\",\"PeriodicalId\":443052,\"journal\":{\"name\":\"Journal of Ubiquitous Computing and Communication Technologies\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ubiquitous Computing and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jucct.2022.3.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ubiquitous Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jucct.2022.3.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

情感分析和话题建模在医疗、娱乐、企业、政治等领域有着广泛的应用。新闻媒体在塑造公众对任何产品或人的看法方面发挥着至关重要的作用。用于这项工作的数据集是印度领先的新门户网站之一的新闻标题数据集,即印度时报。本研究旨在对文本分析的监督学习和无监督学习进行比较研究,并使用类别中表现最好的模型来预测新闻标题的情绪和主题分类。对于情感分析,使用了机器学习集成模型和Bi-LSTM等监督技术。类似地,像LDA(潜狄利克雷分配)和LSA(潜语义分析)这样的无监督技术已经用于主题建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis and Topic Modeling on News Headlines
Sentiment analysis and topic modeling has wide range of applications from medical to entertainment industry, corporates, politics and so on. News media play vital role in shaping the views of public towards any product or people. The dataset used for this work is news headlines dataset of one of the leading new portals of India i.e., Times of India. This research aims to perform comparative study of both supervised and unsupervised learning for text analysis and use the best performing models in both the category for prediction of sentiment and topic classification of news headlines. For sentiment analysis, supervised techniques like Machine learning ensemble model and Bi-LSTM have used. Similarly, unsupervised techniques like LDA (Latent Dirichlet Allocation) and LSA (Latent Semantic Analysis) have been for topic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信