{"title":"MODSiam:移动目标检测使用暹罗网络","authors":"Islam I. Osman, M. Shehata","doi":"10.1109/CCECE47787.2020.9255776","DOIUrl":null,"url":null,"abstract":"Moving object detection is a challenging task in computer vision. A class agnostic model is learned to detect moving objects in a video despite their category. This is done using the proposed MODSiam that takes a single background image of the scene and the current frame as input, then the model extracts features from both inputs and merges then to output the foreground objects. A comparison of using this model with three different backbone convolutional neural networks is presented. The evaluation is done using the metrics precision, recall, F1-measure, false-positive rate, false-negative rate, specificity, accuracy, and the number of frames per second. All models are tested on the benchmark dataset CDNet, which is a dataset of videos for moving objects under different conditions like low frame rate, shadows, and dynamic background. The results show that using ResNet as a backbone produced promising results compared to other models with respect to most of evaluation metrics.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MODSiam: Moving Object Detection using Siamese Networks\",\"authors\":\"Islam I. Osman, M. Shehata\",\"doi\":\"10.1109/CCECE47787.2020.9255776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving object detection is a challenging task in computer vision. A class agnostic model is learned to detect moving objects in a video despite their category. This is done using the proposed MODSiam that takes a single background image of the scene and the current frame as input, then the model extracts features from both inputs and merges then to output the foreground objects. A comparison of using this model with three different backbone convolutional neural networks is presented. The evaluation is done using the metrics precision, recall, F1-measure, false-positive rate, false-negative rate, specificity, accuracy, and the number of frames per second. All models are tested on the benchmark dataset CDNet, which is a dataset of videos for moving objects under different conditions like low frame rate, shadows, and dynamic background. The results show that using ResNet as a backbone produced promising results compared to other models with respect to most of evaluation metrics.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODSiam: Moving Object Detection using Siamese Networks
Moving object detection is a challenging task in computer vision. A class agnostic model is learned to detect moving objects in a video despite their category. This is done using the proposed MODSiam that takes a single background image of the scene and the current frame as input, then the model extracts features from both inputs and merges then to output the foreground objects. A comparison of using this model with three different backbone convolutional neural networks is presented. The evaluation is done using the metrics precision, recall, F1-measure, false-positive rate, false-negative rate, specificity, accuracy, and the number of frames per second. All models are tested on the benchmark dataset CDNet, which is a dataset of videos for moving objects under different conditions like low frame rate, shadows, and dynamic background. The results show that using ResNet as a backbone produced promising results compared to other models with respect to most of evaluation metrics.