Zihan Lin, P. Tsui, Yan Zeng, Guangyu Bin, Shuicai Wu, Zhuhuang Zhou
{"title":"卷积长短时记忆注意门控U-Net用于二维超声心动图左心室自动分割","authors":"Zihan Lin, P. Tsui, Yan Zeng, Guangyu Bin, Shuicai Wu, Zhuhuang Zhou","doi":"10.1109/IUS54386.2022.9958784","DOIUrl":null,"url":null,"abstract":"Left ventricular ejection fraction is one of the important indices to evaluate cardiac function. Manual segmentation of the left ventricle (LV) in 2-D echocardiograms is tedious and time-consuming. We proposed a deep learning method called convolutional long-short-term-memory attention-gated U-Net (CLA-U-Net) for automatic segmentation of the LV in 2-D echocardiograms. The CLA-U-Net model was trained and tested using the EchoNet-Dynamic dataset. The dataset contained 9984 annotated echocardiogram videos (training set: 7456; validation set: 1296; test set 1232). The model was also tested on a private clinical dataset of 20 echocardiogram videos. U-Net was used as the basic encoder and decoder structure, and some very useful structures were designed. In the encoding part, we incorporated a convolutional long-short-term-memory (C-LSTM) block to guide the network to capture the temporal information between frames in the videos. In addition, we replaced the skip-connection structure of the original U-Net with a channel attention mechanism, which can amplify the desired feature signals and suppress the noise. With the proposed CLA-U-Net, the LV was segmented automatically on the EchoNet-Dynamic test set, and a Dice similarity coefficient (DSC) of 0.9311 was obtained. The DSC obtained by the DeepLabV3 network was 0.9236. The hyperparameters of CLA-U-Net were only 19.9 MB, reduced by ~91.6% as compared with DeepLabV3 network. For the private clinical dataset, a DSC of 0.9192 was obtained. Our CLA-U-Net achieved a desirable LV segmentation accuracy, with a lower amount of hyperparameters. The CLA-U-Net may be used as a new lightweight deep learning method for automatic LV segmentation in 2-D echocardiograms.","PeriodicalId":272387,"journal":{"name":"2022 IEEE International Ultrasonics Symposium (IUS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLA-U-Net: Convolutional Long-short-term-memory Attention-gated U-Net for Automatic Segmentation of the Left Ventricle in 2-D Echocardiograms\",\"authors\":\"Zihan Lin, P. Tsui, Yan Zeng, Guangyu Bin, Shuicai Wu, Zhuhuang Zhou\",\"doi\":\"10.1109/IUS54386.2022.9958784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Left ventricular ejection fraction is one of the important indices to evaluate cardiac function. Manual segmentation of the left ventricle (LV) in 2-D echocardiograms is tedious and time-consuming. We proposed a deep learning method called convolutional long-short-term-memory attention-gated U-Net (CLA-U-Net) for automatic segmentation of the LV in 2-D echocardiograms. The CLA-U-Net model was trained and tested using the EchoNet-Dynamic dataset. The dataset contained 9984 annotated echocardiogram videos (training set: 7456; validation set: 1296; test set 1232). The model was also tested on a private clinical dataset of 20 echocardiogram videos. U-Net was used as the basic encoder and decoder structure, and some very useful structures were designed. In the encoding part, we incorporated a convolutional long-short-term-memory (C-LSTM) block to guide the network to capture the temporal information between frames in the videos. In addition, we replaced the skip-connection structure of the original U-Net with a channel attention mechanism, which can amplify the desired feature signals and suppress the noise. With the proposed CLA-U-Net, the LV was segmented automatically on the EchoNet-Dynamic test set, and a Dice similarity coefficient (DSC) of 0.9311 was obtained. The DSC obtained by the DeepLabV3 network was 0.9236. The hyperparameters of CLA-U-Net were only 19.9 MB, reduced by ~91.6% as compared with DeepLabV3 network. For the private clinical dataset, a DSC of 0.9192 was obtained. Our CLA-U-Net achieved a desirable LV segmentation accuracy, with a lower amount of hyperparameters. The CLA-U-Net may be used as a new lightweight deep learning method for automatic LV segmentation in 2-D echocardiograms.\",\"PeriodicalId\":272387,\"journal\":{\"name\":\"2022 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUS54386.2022.9958784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUS54386.2022.9958784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CLA-U-Net: Convolutional Long-short-term-memory Attention-gated U-Net for Automatic Segmentation of the Left Ventricle in 2-D Echocardiograms
Left ventricular ejection fraction is one of the important indices to evaluate cardiac function. Manual segmentation of the left ventricle (LV) in 2-D echocardiograms is tedious and time-consuming. We proposed a deep learning method called convolutional long-short-term-memory attention-gated U-Net (CLA-U-Net) for automatic segmentation of the LV in 2-D echocardiograms. The CLA-U-Net model was trained and tested using the EchoNet-Dynamic dataset. The dataset contained 9984 annotated echocardiogram videos (training set: 7456; validation set: 1296; test set 1232). The model was also tested on a private clinical dataset of 20 echocardiogram videos. U-Net was used as the basic encoder and decoder structure, and some very useful structures were designed. In the encoding part, we incorporated a convolutional long-short-term-memory (C-LSTM) block to guide the network to capture the temporal information between frames in the videos. In addition, we replaced the skip-connection structure of the original U-Net with a channel attention mechanism, which can amplify the desired feature signals and suppress the noise. With the proposed CLA-U-Net, the LV was segmented automatically on the EchoNet-Dynamic test set, and a Dice similarity coefficient (DSC) of 0.9311 was obtained. The DSC obtained by the DeepLabV3 network was 0.9236. The hyperparameters of CLA-U-Net were only 19.9 MB, reduced by ~91.6% as compared with DeepLabV3 network. For the private clinical dataset, a DSC of 0.9192 was obtained. Our CLA-U-Net achieved a desirable LV segmentation accuracy, with a lower amount of hyperparameters. The CLA-U-Net may be used as a new lightweight deep learning method for automatic LV segmentation in 2-D echocardiograms.