基于覆盖控制的任意维非线性达避博弈的多玩家追踪者协调

P. Rivera-Ortiz, Y. Diaz-Mercado, Marin Kobilarov
{"title":"基于覆盖控制的任意维非线性达避博弈的多玩家追踪者协调","authors":"P. Rivera-Ortiz, Y. Diaz-Mercado, Marin Kobilarov","doi":"10.23919/ACC45564.2020.9147975","DOIUrl":null,"url":null,"abstract":"The concept of reach-avoid (RA) games via coverage control is generalized to players with nonlinear dynamics and in arbitrary dimensions. Pursuer coordination on defense surfaces is formally shown sufficient as a cooperative strategy for RA games in any dimensions. Nonlinear control synthesis strategies with convergence guarantees are provided to enforce coverage on said surfaces. The effectiveness of two coverage control formulations is verified through simulation.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Player Pursuer Coordination for Nonlinear Reach-Avoid Games in Arbitrary Dimensions via Coverage Control\",\"authors\":\"P. Rivera-Ortiz, Y. Diaz-Mercado, Marin Kobilarov\",\"doi\":\"10.23919/ACC45564.2020.9147975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of reach-avoid (RA) games via coverage control is generalized to players with nonlinear dynamics and in arbitrary dimensions. Pursuer coordination on defense surfaces is formally shown sufficient as a cooperative strategy for RA games in any dimensions. Nonlinear control synthesis strategies with convergence guarantees are provided to enforce coverage on said surfaces. The effectiveness of two coverage control formulations is verified through simulation.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9147975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过覆盖控制的到达-避免(RA)博弈的概念推广到具有非线性动力学和任意维度的参与者。在任何维度的RA博弈中,追踪者在防御表面上的协调被正式证明是一种充分的合作策略。提出了具有收敛性保证的非线性控制综合策略来实现对所述曲面的覆盖。通过仿真验证了两种覆盖控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Player Pursuer Coordination for Nonlinear Reach-Avoid Games in Arbitrary Dimensions via Coverage Control
The concept of reach-avoid (RA) games via coverage control is generalized to players with nonlinear dynamics and in arbitrary dimensions. Pursuer coordination on defense surfaces is formally shown sufficient as a cooperative strategy for RA games in any dimensions. Nonlinear control synthesis strategies with convergence guarantees are provided to enforce coverage on said surfaces. The effectiveness of two coverage control formulations is verified through simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信