使用数据挖掘技术预测学生职业认同的方法论预览

S. Kurnaz, Raya Mohammed Mahmood
{"title":"使用数据挖掘技术预测学生职业认同的方法论预览","authors":"S. Kurnaz, Raya Mohammed Mahmood","doi":"10.1145/3234698.3234754","DOIUrl":null,"url":null,"abstract":"This methodology aimed to predict Professional Identity Development (PID) of Altinbas University students using survey called Professional Identity Five Factor Scale(PIFFS) which will be applied to sample of the students and analyzing the results using data mining techniques and machine learning algorithms. The accuracy and speed comparison will be generated between single and distributed database of the corresponding survey data which is launched to a local web server(apache) in comparison to windows Azure (as cloud server) to clarify the effect of using different platforms and database techniques on prediction accuracy.","PeriodicalId":144334,"journal":{"name":"Proceedings of the Fourth International Conference on Engineering & MIS 2018","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methodology Preview on Predicting Students Professional Identity Using Data Mining Techniques\",\"authors\":\"S. Kurnaz, Raya Mohammed Mahmood\",\"doi\":\"10.1145/3234698.3234754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This methodology aimed to predict Professional Identity Development (PID) of Altinbas University students using survey called Professional Identity Five Factor Scale(PIFFS) which will be applied to sample of the students and analyzing the results using data mining techniques and machine learning algorithms. The accuracy and speed comparison will be generated between single and distributed database of the corresponding survey data which is launched to a local web server(apache) in comparison to windows Azure (as cloud server) to clarify the effect of using different platforms and database techniques on prediction accuracy.\",\"PeriodicalId\":144334,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Engineering & MIS 2018\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Engineering & MIS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234698.3234754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Engineering & MIS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234698.3234754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

该方法旨在预测阿尔廷巴斯大学学生的职业认同发展(PID),使用名为职业认同五因素量表(PIFFS)的调查,该调查将应用于学生样本,并使用数据挖掘技术和机器学习算法分析结果。将相应的调查数据放到本地web服务器(apache)上的单一数据库和分布式数据库与windows Azure(作为云服务器)进行对比,得出准确性和速度的对比,以阐明使用不同平台和数据库技术对预测准确性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodology Preview on Predicting Students Professional Identity Using Data Mining Techniques
This methodology aimed to predict Professional Identity Development (PID) of Altinbas University students using survey called Professional Identity Five Factor Scale(PIFFS) which will be applied to sample of the students and analyzing the results using data mining techniques and machine learning algorithms. The accuracy and speed comparison will be generated between single and distributed database of the corresponding survey data which is launched to a local web server(apache) in comparison to windows Azure (as cloud server) to clarify the effect of using different platforms and database techniques on prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信