单图像超分辨率使用非局部三维卷积神经网络

Z. Xiong, Xiaoming Tao, Nan Zhao, Baihong Lin
{"title":"单图像超分辨率使用非局部三维卷积神经网络","authors":"Z. Xiong, Xiaoming Tao, Nan Zhao, Baihong Lin","doi":"10.1109/GlobalSIP.2018.8646451","DOIUrl":null,"url":null,"abstract":"Single image super-resolution (SR), which intends to recover a high-resolution (HR) image from a single low-resolution (LR) image, has attracted increasing attentions with a wide range of applications. In this paper, we propose a novel non-local scheme based on a 3D convolutional neural network (3DCNN) for image super-resolution. Different from most previous methods, our scheme takes the inherent non-local self-similarity property of natural images into account. Specifically, the non-local similar patches are searched and extracted from low-resolution images. Then a 3DCNN is constructed to jointly sharpen these non-local patches, which can make full use of the non-local similarity in natural images. Finally, the super-resolved image is reconstructed from the sharpened patches. Experiments show that the proposed non-local method achieves the superior reconstruction accuracy compared with several state-of-the-art methods.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SINGLE IMAGE SUPER-RESOLUTION USING A NON-LOCAL 3D CONVOLUTIONAL NEURAL NETWORK\",\"authors\":\"Z. Xiong, Xiaoming Tao, Nan Zhao, Baihong Lin\",\"doi\":\"10.1109/GlobalSIP.2018.8646451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single image super-resolution (SR), which intends to recover a high-resolution (HR) image from a single low-resolution (LR) image, has attracted increasing attentions with a wide range of applications. In this paper, we propose a novel non-local scheme based on a 3D convolutional neural network (3DCNN) for image super-resolution. Different from most previous methods, our scheme takes the inherent non-local self-similarity property of natural images into account. Specifically, the non-local similar patches are searched and extracted from low-resolution images. Then a 3DCNN is constructed to jointly sharpen these non-local patches, which can make full use of the non-local similarity in natural images. Finally, the super-resolved image is reconstructed from the sharpened patches. Experiments show that the proposed non-local method achieves the superior reconstruction accuracy compared with several state-of-the-art methods.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单幅图像超分辨率(SR)是一种从单幅低分辨率(LR)图像中恢复出高分辨率(HR)图像的技术,其应用越来越广泛,越来越受到人们的关注。本文提出了一种基于三维卷积神经网络(3DCNN)的非局部图像超分辨率方案。与以往的方法不同,我们的方法考虑了自然图像固有的非局部自相似特性。具体而言,从低分辨率图像中搜索和提取非局部相似斑块。然后构建3DCNN对这些非局部patch进行联合锐化,可以充分利用自然图像的非局部相似度。最后,利用锐化后的图像重构出超分辨图像。实验表明,与现有的几种重建方法相比,该方法具有较高的重建精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SINGLE IMAGE SUPER-RESOLUTION USING A NON-LOCAL 3D CONVOLUTIONAL NEURAL NETWORK
Single image super-resolution (SR), which intends to recover a high-resolution (HR) image from a single low-resolution (LR) image, has attracted increasing attentions with a wide range of applications. In this paper, we propose a novel non-local scheme based on a 3D convolutional neural network (3DCNN) for image super-resolution. Different from most previous methods, our scheme takes the inherent non-local self-similarity property of natural images into account. Specifically, the non-local similar patches are searched and extracted from low-resolution images. Then a 3DCNN is constructed to jointly sharpen these non-local patches, which can make full use of the non-local similarity in natural images. Finally, the super-resolved image is reconstructed from the sharpened patches. Experiments show that the proposed non-local method achieves the superior reconstruction accuracy compared with several state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信