撒哈拉以南非洲农村电气化用机电电池分析

R. Okou, M. A. Khan, P. Barendse, B. Sebitosi, P. Pillay
{"title":"撒哈拉以南非洲农村电气化用机电电池分析","authors":"R. Okou, M. A. Khan, P. Barendse, B. Sebitosi, P. Pillay","doi":"10.1109/ECCE.2010.5617722","DOIUrl":null,"url":null,"abstract":"This paper presents the thermal and structural analysis of an electromechanical battery energy storage system designed to enhance rural electrification in sub-Saharan Africa. The system consists of a flywheel rotor, an electrical machine, bearings and a containment structure. The flywheel rotor was constructed from E-glass fiber, the machine from imported NdFeB magnets and commercial energy efficient bearings. With the exception of the power electronics and magnets, local materials were used for the manufacture of the flywheel system. The system was designed to operate between 8,000 rpm to 25,000 rpm with a rated storage capacity of 300Wh. Numerical stress analysis was performed during the design stage to ensure that the maximum tensile strength is not exceeded. A lumped parameter thermal model was used to estimate the temperature distribution to ensure safe operating conditions of the flywheel system and environment. The results of both analyses are presented.","PeriodicalId":161915,"journal":{"name":"2010 IEEE Energy Conversion Congress and Exposition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of an electromechanical battery for rural electrification in sub-Saharan Africa\",\"authors\":\"R. Okou, M. A. Khan, P. Barendse, B. Sebitosi, P. Pillay\",\"doi\":\"10.1109/ECCE.2010.5617722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the thermal and structural analysis of an electromechanical battery energy storage system designed to enhance rural electrification in sub-Saharan Africa. The system consists of a flywheel rotor, an electrical machine, bearings and a containment structure. The flywheel rotor was constructed from E-glass fiber, the machine from imported NdFeB magnets and commercial energy efficient bearings. With the exception of the power electronics and magnets, local materials were used for the manufacture of the flywheel system. The system was designed to operate between 8,000 rpm to 25,000 rpm with a rated storage capacity of 300Wh. Numerical stress analysis was performed during the design stage to ensure that the maximum tensile strength is not exceeded. A lumped parameter thermal model was used to estimate the temperature distribution to ensure safe operating conditions of the flywheel system and environment. The results of both analyses are presented.\",\"PeriodicalId\":161915,\"journal\":{\"name\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2010.5617722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Energy Conversion Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2010.5617722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了旨在提高撒哈拉以南非洲农村电气化的机电电池储能系统的热学和结构分析。该系统由飞轮转子、电机、轴承和安全壳结构组成。飞轮转子由e -玻璃纤维制成,机器由进口钕铁硼磁铁和商用节能轴承制成。除了电力电子和磁铁,当地的材料被用于制造飞轮系统。该系统被设计为在8,000 rpm到25,000 rpm之间运行,额定存储容量为300Wh。在设计阶段进行了数值应力分析,以确保不超过最大拉伸强度。采用集总参数热模型对温度分布进行估计,保证飞轮系统和环境的安全运行。给出了两种分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of an electromechanical battery for rural electrification in sub-Saharan Africa
This paper presents the thermal and structural analysis of an electromechanical battery energy storage system designed to enhance rural electrification in sub-Saharan Africa. The system consists of a flywheel rotor, an electrical machine, bearings and a containment structure. The flywheel rotor was constructed from E-glass fiber, the machine from imported NdFeB magnets and commercial energy efficient bearings. With the exception of the power electronics and magnets, local materials were used for the manufacture of the flywheel system. The system was designed to operate between 8,000 rpm to 25,000 rpm with a rated storage capacity of 300Wh. Numerical stress analysis was performed during the design stage to ensure that the maximum tensile strength is not exceeded. A lumped parameter thermal model was used to estimate the temperature distribution to ensure safe operating conditions of the flywheel system and environment. The results of both analyses are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信