基于LSTM神经网络的虚拟同步发电机暂态角稳定性预测

Yang Shen, Zhikang Shuai, Chao Shen, Xia Shen, Jun Ge
{"title":"基于LSTM神经网络的虚拟同步发电机暂态角稳定性预测","authors":"Yang Shen, Zhikang Shuai, Chao Shen, Xia Shen, Jun Ge","doi":"10.1109/ECCE47101.2021.9595637","DOIUrl":null,"url":null,"abstract":"Virtual synchronous generator (VSG) attracts great attention for mimicking synchronous generators but suffers from transient instability. Predicting the stability is important for protecting the VSG. Unlike synchronous generators, quick and precise prediction is needed for VSG due to the lack of physical inertia. In this paper, a long-short term memory (LSTM) neural network is proposed to predict hundreds of milliseconds in the future of VSG’s synchronousness and stability margin, but only takes dozens of milliseconds. Furthermore, the input and output data of the proposed LSTM is designed based on singular perturbation theory so that quick and accurate prediction is guaranteed. Simulation result shows that proposed LSTM possesses a great potential in online prediction.","PeriodicalId":349891,"journal":{"name":"2021 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transient Angle Stability Prediction of Virtual Synchronous Generator Using LSTM Neural Network\",\"authors\":\"Yang Shen, Zhikang Shuai, Chao Shen, Xia Shen, Jun Ge\",\"doi\":\"10.1109/ECCE47101.2021.9595637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual synchronous generator (VSG) attracts great attention for mimicking synchronous generators but suffers from transient instability. Predicting the stability is important for protecting the VSG. Unlike synchronous generators, quick and precise prediction is needed for VSG due to the lack of physical inertia. In this paper, a long-short term memory (LSTM) neural network is proposed to predict hundreds of milliseconds in the future of VSG’s synchronousness and stability margin, but only takes dozens of milliseconds. Furthermore, the input and output data of the proposed LSTM is designed based on singular perturbation theory so that quick and accurate prediction is guaranteed. Simulation result shows that proposed LSTM possesses a great potential in online prediction.\",\"PeriodicalId\":349891,\"journal\":{\"name\":\"2021 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE47101.2021.9595637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE47101.2021.9595637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

虚拟同步发电机(VSG)因其对同步发电机的模仿而备受关注,但存在暂态不稳定问题。预测其稳定性对保护VSG具有重要意义。与同步发电机不同,由于缺乏物理惯性,VSG需要快速精确的预测。本文提出了一种长短期记忆(LSTM)神经网络来预测未来几百毫秒的VSG同步性和稳定裕度,而实际只需要几十毫秒。此外,基于奇异摄动理论设计了LSTM的输入和输出数据,保证了预测的快速和准确。仿真结果表明,所提出的LSTM在在线预测方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Angle Stability Prediction of Virtual Synchronous Generator Using LSTM Neural Network
Virtual synchronous generator (VSG) attracts great attention for mimicking synchronous generators but suffers from transient instability. Predicting the stability is important for protecting the VSG. Unlike synchronous generators, quick and precise prediction is needed for VSG due to the lack of physical inertia. In this paper, a long-short term memory (LSTM) neural network is proposed to predict hundreds of milliseconds in the future of VSG’s synchronousness and stability margin, but only takes dozens of milliseconds. Furthermore, the input and output data of the proposed LSTM is designed based on singular perturbation theory so that quick and accurate prediction is guaranteed. Simulation result shows that proposed LSTM possesses a great potential in online prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信