面向自动驾驶汽车服务的多层次云架构交通预测的深度学习方法

M. Alsweity
{"title":"面向自动驾驶汽车服务的多层次云架构交通预测的深度学习方法","authors":"M. Alsweity","doi":"10.31854/1813-324x-2022-8-4-89-99","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle (AV) is one of the most new use cases and a technology for fifth-generation (5G) and next-generation mobile networks in numerous applications., the use of AVs has exponentially worldwide due to the rapidly growing awareness and use of artificial intelligence (AI) methods in various fields. Predicting data flows is essential for AVs to improve data transmission and decrease delays through more efficient use of appropriate capabilities, monitoring, management, and control of the traffic system. This paper proposes a deep learning approach (DL) with the bidirectional long-short-term memory model (BI-LSTM) for predicting the traffic rates of AVs with multi-cloud services. In terms of prediction accuracy, a comparison is conducted between the BI-LSTM and the unidirectional LSTM based on the number of batch sizes used. The prediction accuracy is computed using the root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and processing time. The results show that the prediction accuracy with BI-LSTM outperforms the LSTM model. Besides, the prediction accuracy using 8 batch sizes outperforms the competitors and offers outstanding performance.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Approaches for Traffic Prediction Forecasting in Multi-Level Cloud Architecture for Autonomous Vehicle Services\",\"authors\":\"M. Alsweity\",\"doi\":\"10.31854/1813-324x-2022-8-4-89-99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle (AV) is one of the most new use cases and a technology for fifth-generation (5G) and next-generation mobile networks in numerous applications., the use of AVs has exponentially worldwide due to the rapidly growing awareness and use of artificial intelligence (AI) methods in various fields. Predicting data flows is essential for AVs to improve data transmission and decrease delays through more efficient use of appropriate capabilities, monitoring, management, and control of the traffic system. This paper proposes a deep learning approach (DL) with the bidirectional long-short-term memory model (BI-LSTM) for predicting the traffic rates of AVs with multi-cloud services. In terms of prediction accuracy, a comparison is conducted between the BI-LSTM and the unidirectional LSTM based on the number of batch sizes used. The prediction accuracy is computed using the root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and processing time. The results show that the prediction accuracy with BI-LSTM outperforms the LSTM model. Besides, the prediction accuracy using 8 batch sizes outperforms the competitors and offers outstanding performance.\",\"PeriodicalId\":298883,\"journal\":{\"name\":\"Proceedings of Telecommunication Universities\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Telecommunication Universities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31854/1813-324x-2022-8-4-89-99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2022-8-4-89-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动驾驶汽车(AV)是最新的用例之一,也是第五代(5G)和下一代移动网络在众多应用中的技术。在全球范围内,由于人们对人工智能(AI)方法的认识和使用迅速增长,自动驾驶汽车的使用呈指数级增长。预测数据流对于自动驾驶汽车来说至关重要,通过更有效地利用适当的功能、监控、管理和控制交通系统,可以改善数据传输并减少延迟。本文提出了一种基于双向长短期记忆模型(BI-LSTM)的深度学习方法,用于预测具有多云服务的自动驾驶汽车的流量。在预测精度方面,根据所使用的批大小数量对BI-LSTM和单向LSTM进行了比较。使用均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R2)和处理时间计算预测精度。结果表明,BI-LSTM的预测精度优于LSTM模型。此外,使用8批大小的预测精度优于竞争对手,提供了出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Approaches for Traffic Prediction Forecasting in Multi-Level Cloud Architecture for Autonomous Vehicle Services
Autonomous vehicle (AV) is one of the most new use cases and a technology for fifth-generation (5G) and next-generation mobile networks in numerous applications., the use of AVs has exponentially worldwide due to the rapidly growing awareness and use of artificial intelligence (AI) methods in various fields. Predicting data flows is essential for AVs to improve data transmission and decrease delays through more efficient use of appropriate capabilities, monitoring, management, and control of the traffic system. This paper proposes a deep learning approach (DL) with the bidirectional long-short-term memory model (BI-LSTM) for predicting the traffic rates of AVs with multi-cloud services. In terms of prediction accuracy, a comparison is conducted between the BI-LSTM and the unidirectional LSTM based on the number of batch sizes used. The prediction accuracy is computed using the root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and processing time. The results show that the prediction accuracy with BI-LSTM outperforms the LSTM model. Besides, the prediction accuracy using 8 batch sizes outperforms the competitors and offers outstanding performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信