无参考的歌唱质量自动评价

Chitralekha Gupta, Haizhou Li, Ye Wang
{"title":"无参考的歌唱质量自动评价","authors":"Chitralekha Gupta, Haizhou Li, Ye Wang","doi":"10.23919/APSIPA.2018.8659545","DOIUrl":null,"url":null,"abstract":"Automatic singing quality evaluation methods currently rely on reference singing vocals or score information for comparison. However singers may deviate from the reference singing vocal to personalize the singing that still sounds good. In this work, we present pitch histogram-based methods to automatically evaluate singing quality without any reference singing or score information. We validate the methods with the help of human ratings, and compare with the baseline methods of singing evaluation without a reference. We obtain an average Spearman's rank correlation of 0.716 with human judgments.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic Evaluation of Singing Quality without a Reference\",\"authors\":\"Chitralekha Gupta, Haizhou Li, Ye Wang\",\"doi\":\"10.23919/APSIPA.2018.8659545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic singing quality evaluation methods currently rely on reference singing vocals or score information for comparison. However singers may deviate from the reference singing vocal to personalize the singing that still sounds good. In this work, we present pitch histogram-based methods to automatically evaluate singing quality without any reference singing or score information. We validate the methods with the help of human ratings, and compare with the baseline methods of singing evaluation without a reference. We obtain an average Spearman's rank correlation of 0.716 with human judgments.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前的自动演唱质量评价方法依赖于参考演唱人声或乐谱信息进行比较。然而,歌手可能会偏离参考演唱声乐个性化的歌唱,仍然听起来很好。在这项工作中,我们提出了基于音高直方图的方法来自动评估演唱质量,而不需要任何参考演唱或乐谱信息。我们在人类评分的帮助下验证了这些方法,并在没有参考的情况下与唱歌评估的基线方法进行了比较。我们得到了与人类判断的平均斯皮尔曼秩相关系数为0.716。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Evaluation of Singing Quality without a Reference
Automatic singing quality evaluation methods currently rely on reference singing vocals or score information for comparison. However singers may deviate from the reference singing vocal to personalize the singing that still sounds good. In this work, we present pitch histogram-based methods to automatically evaluate singing quality without any reference singing or score information. We validate the methods with the help of human ratings, and compare with the baseline methods of singing evaluation without a reference. We obtain an average Spearman's rank correlation of 0.716 with human judgments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信