部分充满粘弹性流体的摆的小振荡分析

H. Essaouini, P. Capodanno
{"title":"部分充满粘弹性流体的摆的小振荡分析","authors":"H. Essaouini, P. Capodanno","doi":"10.3934/cam.2023019","DOIUrl":null,"url":null,"abstract":"This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \\beta $ and $ \\infty $ where $ \\beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of small oscillations of a pendulum partially filled with a viscoelastic fluid\",\"authors\":\"H. Essaouini, P. Capodanno\",\"doi\":\"10.3934/cam.2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \\\\beta $ and $ \\\\infty $ where $ \\\\beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.\",\"PeriodicalId\":233941,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cam.2023019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了描述部分充入均匀不可压缩粘弹性流体的重摆振荡方程的谱分析。流体的本构方程遵循更简单的奥尔德罗伊德模型。通过研究描述耦合系统动力学的线性算子的特征值,证明了在适当的假设下,平衡构型在线性近似下保持稳定。此外,当粘度系数足够大时,谱包括特征值的三个分支,其潜在聚类点分别为$ 0 $、$ \beta $和$ \infty $,其中$ \beta $表示流体的粘弹性参数。特征值的这三个分支对应于与各种类型的波相关的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of small oscillations of a pendulum partially filled with a viscoelastic fluid
This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \beta $ and $ \infty $ where $ \beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信