{"title":"部分充满粘弹性流体的摆的小振荡分析","authors":"H. Essaouini, P. Capodanno","doi":"10.3934/cam.2023019","DOIUrl":null,"url":null,"abstract":"This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \\beta $ and $ \\infty $ where $ \\beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of small oscillations of a pendulum partially filled with a viscoelastic fluid\",\"authors\":\"H. Essaouini, P. Capodanno\",\"doi\":\"10.3934/cam.2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \\\\beta $ and $ \\\\infty $ where $ \\\\beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.\",\"PeriodicalId\":233941,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cam.2023019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of small oscillations of a pendulum partially filled with a viscoelastic fluid
This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \beta $ and $ \infty $ where $ \beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.