使ABA= a²和BAB= b²的线性算子a和b的共同谱性质

C. Schmoeger
{"title":"使ABA= a²和BAB= b²的线性算子a和b的共同谱性质","authors":"C. Schmoeger","doi":"10.2298/PIM0693109S","DOIUrl":null,"url":null,"abstract":"Let A and B be bounded linear operators on a Banach space such that ABA = A 2 and BAB = B 2 .T henA and B have some spectral properties in common. This situation is studied in the present paper. 1. Terminology and motivation Throughout this paper X denotes a complex Banach space and L(X) the Ba- nach algebra of all bounded linear operators on X.F orA ∈L (X), let N (A) denote the null space of A, and let A(X) denote the range of A.W e use σ(A) ,σ p(A) ,σ ap(A) ,σ r(A) ,σ c(A )a ndρ(A) to denote spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, the continuous spectrum and the resolvent set of A, respectively. An operator A ∈L (X )i ssemi-Fredholm if A(X) is closed and either α(A ): = dim N (A )o rβ(A ): = codimA(X) is finite. A ∈L (X )i sFredolm if A is semi- Fredholm, α(A) < ∞ and β(A) < ∞ .T heFredholm spectrum σF (A )o fA is given by σF (A )= {λ ∈ C : λI − A is not Fredholm}. The dual space of X is denoted by X ∗ and the adjoint of A ∈L (X )b yA ∗ .","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Common spectral properties of linear operators a and b such that ABA=A² and BAB=B²\",\"authors\":\"C. Schmoeger\",\"doi\":\"10.2298/PIM0693109S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A and B be bounded linear operators on a Banach space such that ABA = A 2 and BAB = B 2 .T henA and B have some spectral properties in common. This situation is studied in the present paper. 1. Terminology and motivation Throughout this paper X denotes a complex Banach space and L(X) the Ba- nach algebra of all bounded linear operators on X.F orA ∈L (X), let N (A) denote the null space of A, and let A(X) denote the range of A.W e use σ(A) ,σ p(A) ,σ ap(A) ,σ r(A) ,σ c(A )a ndρ(A) to denote spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, the continuous spectrum and the resolvent set of A, respectively. An operator A ∈L (X )i ssemi-Fredholm if A(X) is closed and either α(A ): = dim N (A )o rβ(A ): = codimA(X) is finite. A ∈L (X )i sFredolm if A is semi- Fredholm, α(A) < ∞ and β(A) < ∞ .T heFredholm spectrum σF (A )o fA is given by σF (A )= {λ ∈ C : λI − A is not Fredholm}. The dual space of X is denoted by X ∗ and the adjoint of A ∈L (X )b yA ∗ .\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0693109S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0693109S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

设A和B是Banach空间上的有界线性算子,使得ABA = a2和BAB = b2,那么A和B具有一些共同的谱性质。本文对这种情况进行了研究。1. 术语和动机在本文X代表一个复杂的巴拿赫空间和L (X)的Ba -代数票上所有有界的线性算子范奥拉∈L (X),让N (a)表示的零空间,让一个(X)表示的范围A.W e使用σ(a),σp (a),σap (a),σr (a),σc (a)和ρ(a)表示,点谱,近似点谱,剩余谱,连续光谱和溶剂组,分别。如果A(X)是闭的,且α(A): = dim N (A)或rβ(A): = codimA(X)是有限的,则算子A∈L (X)是半fredholm。如果A是半- Fredholm, α(A) <∞,β(A) <∞,则A∈L (X)i sFredolm . t Fredholm谱σF (A) o fA由σF (A) = {λ∈C: λ i−A不是Fredholm}给出。X的对偶空间用X *和A∈L (X)b的伴随矩阵yA *表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common spectral properties of linear operators a and b such that ABA=A² and BAB=B²
Let A and B be bounded linear operators on a Banach space such that ABA = A 2 and BAB = B 2 .T henA and B have some spectral properties in common. This situation is studied in the present paper. 1. Terminology and motivation Throughout this paper X denotes a complex Banach space and L(X) the Ba- nach algebra of all bounded linear operators on X.F orA ∈L (X), let N (A) denote the null space of A, and let A(X) denote the range of A.W e use σ(A) ,σ p(A) ,σ ap(A) ,σ r(A) ,σ c(A )a ndρ(A) to denote spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, the continuous spectrum and the resolvent set of A, respectively. An operator A ∈L (X )i ssemi-Fredholm if A(X) is closed and either α(A ): = dim N (A )o rβ(A ): = codimA(X) is finite. A ∈L (X )i sFredolm if A is semi- Fredholm, α(A) < ∞ and β(A) < ∞ .T heFredholm spectrum σF (A )o fA is given by σF (A )= {λ ∈ C : λI − A is not Fredholm}. The dual space of X is denoted by X ∗ and the adjoint of A ∈L (X )b yA ∗ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信