一种有效的目标分类方法

Yanning Zhang, L. Jiao, Hu Songhua
{"title":"一种有效的目标分类方法","authors":"Yanning Zhang, L. Jiao, Hu Songhua","doi":"10.1109/ICOSP.1998.770828","DOIUrl":null,"url":null,"abstract":"The People's Republic of China's fishery and offshore petroleum development industries have been in urgent need of a classifier of noise signals. In this paper, a local adaptive wavelet neural network is proposed, and an efficient engineering classifier based on the local adaptive wavelet neural network is designed and applied to classifying actual ship noises. The classification experiment results are encouraging, which shows that the classifier above is an efficient engineering classifier for actual ship noises.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient method of target classification\",\"authors\":\"Yanning Zhang, L. Jiao, Hu Songhua\",\"doi\":\"10.1109/ICOSP.1998.770828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The People's Republic of China's fishery and offshore petroleum development industries have been in urgent need of a classifier of noise signals. In this paper, a local adaptive wavelet neural network is proposed, and an efficient engineering classifier based on the local adaptive wavelet neural network is designed and applied to classifying actual ship noises. The classification experiment results are encouraging, which shows that the classifier above is an efficient engineering classifier for actual ship noises.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

中华人民共和国的渔业和海洋石油开发工业迫切需要一种噪声信号分类器。本文提出了一种局部自适应小波神经网络,设计了一种基于局部自适应小波神经网络的高效工程分类器,并将其应用于实际船舶噪声的分类。分类实验结果令人鼓舞,表明该分类器是一种有效的船舶噪声工程分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient method of target classification
The People's Republic of China's fishery and offshore petroleum development industries have been in urgent need of a classifier of noise signals. In this paper, a local adaptive wavelet neural network is proposed, and an efficient engineering classifier based on the local adaptive wavelet neural network is designed and applied to classifying actual ship noises. The classification experiment results are encouraging, which shows that the classifier above is an efficient engineering classifier for actual ship noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信