Leonardo Garberoglio, Patricio Moreno, I. Mas, J. Giribet
{"title":"面向户外多域映射的自动驾驶汽车","authors":"Leonardo Garberoglio, Patricio Moreno, I. Mas, J. Giribet","doi":"10.1109/ARGENCON.2018.8646054","DOIUrl":null,"url":null,"abstract":"In the last years, progress has been made attempting to replace a unique, complex and expensive vehicle equipped with several sensors such as LIDAR, RGB cameras, thermal sensor, etc. with a group of small vehicles, each of them carrying one sensor. There are several advantages of these segmented architectures, for instance this allows a reduction in the cost of the vehicles (several small vehicles can be less expensive than one big vehicle), the flexibility to choose for a mission only those vehicles with the appropriate sensors, the robustness of the system since it can acquire information even if one vehicle fails, among others. The advantage of segmented architectures is even more noticeable if the vehicles carrying those different sensors, have different characteristics or environments for operations, e.g. aerial, terrestrial or aquatic vehicles. In this work, we present the experimental results obtained with an ASV (Autonomous Surface Vehicle) and a UAV (Unmanned Aerial Vehicle) that cooperate to obtain a topographic survey of the terrain. The ASV is equipped with a LIDAR, meanwhile the UAV is equipped with a monocular RGB camera. The data acquired is post-processed in order to obtain a detailed map of the coastline of a creek and the surrounding area.","PeriodicalId":395838,"journal":{"name":"2018 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Autonomous Vehicles for Outdoor Multidomain Mapping\",\"authors\":\"Leonardo Garberoglio, Patricio Moreno, I. Mas, J. Giribet\",\"doi\":\"10.1109/ARGENCON.2018.8646054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years, progress has been made attempting to replace a unique, complex and expensive vehicle equipped with several sensors such as LIDAR, RGB cameras, thermal sensor, etc. with a group of small vehicles, each of them carrying one sensor. There are several advantages of these segmented architectures, for instance this allows a reduction in the cost of the vehicles (several small vehicles can be less expensive than one big vehicle), the flexibility to choose for a mission only those vehicles with the appropriate sensors, the robustness of the system since it can acquire information even if one vehicle fails, among others. The advantage of segmented architectures is even more noticeable if the vehicles carrying those different sensors, have different characteristics or environments for operations, e.g. aerial, terrestrial or aquatic vehicles. In this work, we present the experimental results obtained with an ASV (Autonomous Surface Vehicle) and a UAV (Unmanned Aerial Vehicle) that cooperate to obtain a topographic survey of the terrain. The ASV is equipped with a LIDAR, meanwhile the UAV is equipped with a monocular RGB camera. The data acquired is post-processed in order to obtain a detailed map of the coastline of a creek and the surrounding area.\",\"PeriodicalId\":395838,\"journal\":{\"name\":\"2018 IEEE Biennial Congress of Argentina (ARGENCON)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Biennial Congress of Argentina (ARGENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARGENCON.2018.8646054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON.2018.8646054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous Vehicles for Outdoor Multidomain Mapping
In the last years, progress has been made attempting to replace a unique, complex and expensive vehicle equipped with several sensors such as LIDAR, RGB cameras, thermal sensor, etc. with a group of small vehicles, each of them carrying one sensor. There are several advantages of these segmented architectures, for instance this allows a reduction in the cost of the vehicles (several small vehicles can be less expensive than one big vehicle), the flexibility to choose for a mission only those vehicles with the appropriate sensors, the robustness of the system since it can acquire information even if one vehicle fails, among others. The advantage of segmented architectures is even more noticeable if the vehicles carrying those different sensors, have different characteristics or environments for operations, e.g. aerial, terrestrial or aquatic vehicles. In this work, we present the experimental results obtained with an ASV (Autonomous Surface Vehicle) and a UAV (Unmanned Aerial Vehicle) that cooperate to obtain a topographic survey of the terrain. The ASV is equipped with a LIDAR, meanwhile the UAV is equipped with a monocular RGB camera. The data acquired is post-processed in order to obtain a detailed map of the coastline of a creek and the surrounding area.