{"title":"卷积神经网络在自动驾驶机动中的应用","authors":"Oscar González-Miranda, J. M. Ibarra-Zannatha","doi":"10.1109/comrob53312.2021.9628491","DOIUrl":null,"url":null,"abstract":"In this work, we use a convolutional neural network (CNN) to process the lidar data of an autonomous vehicle and so get the steering angle to carry out the obstacle evasion and parking maneuvers. To introduce the lidar data and other measurements in a CNN, we map the 400 polar vectors (ρi, ϕi) in a 20 × 20 normalized matrix; which the position of each element correspond to an angle ϕi and the elements are ρi/ρmax. We probe the method in simulator developed by the Freie Universität Berlin [1], getting a similar performance as a finite state machine, used as an expert driver in the training.","PeriodicalId":191869,"journal":{"name":"2021 XXIII Robotics Mexican Congress (ComRob)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Use of convolutional neural networks for autonomous driving maneuver\",\"authors\":\"Oscar González-Miranda, J. M. Ibarra-Zannatha\",\"doi\":\"10.1109/comrob53312.2021.9628491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we use a convolutional neural network (CNN) to process the lidar data of an autonomous vehicle and so get the steering angle to carry out the obstacle evasion and parking maneuvers. To introduce the lidar data and other measurements in a CNN, we map the 400 polar vectors (ρi, ϕi) in a 20 × 20 normalized matrix; which the position of each element correspond to an angle ϕi and the elements are ρi/ρmax. We probe the method in simulator developed by the Freie Universität Berlin [1], getting a similar performance as a finite state machine, used as an expert driver in the training.\",\"PeriodicalId\":191869,\"journal\":{\"name\":\"2021 XXIII Robotics Mexican Congress (ComRob)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XXIII Robotics Mexican Congress (ComRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comrob53312.2021.9628491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXIII Robotics Mexican Congress (ComRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comrob53312.2021.9628491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在这项工作中,我们使用卷积神经网络(CNN)来处理自动驾驶汽车的激光雷达数据,从而获得转向角度来进行避障和停车操作。为了在CNN中引入激光雷达数据和其他测量数据,我们将400个极性向量(ρi, ϕi)映射到一个20 × 20的归一化矩阵中;其中每个元素的位置对应于一个角ϕi,元素为ρi/ρmax。我们在Freie Universität Berlin[1]开发的模拟器中探索了该方法,获得了与有限状态机相似的性能,用作训练中的专家驾驶员。
Use of convolutional neural networks for autonomous driving maneuver
In this work, we use a convolutional neural network (CNN) to process the lidar data of an autonomous vehicle and so get the steering angle to carry out the obstacle evasion and parking maneuvers. To introduce the lidar data and other measurements in a CNN, we map the 400 polar vectors (ρi, ϕi) in a 20 × 20 normalized matrix; which the position of each element correspond to an angle ϕi and the elements are ρi/ρmax. We probe the method in simulator developed by the Freie Universität Berlin [1], getting a similar performance as a finite state machine, used as an expert driver in the training.