应用于浅水方程的无矩阵Rosenbrock-K方法的CUDA加速

P. Tranquilli, Ross Glandon, Adrian Sandu
{"title":"应用于浅水方程的无矩阵Rosenbrock-K方法的CUDA加速","authors":"P. Tranquilli, Ross Glandon, Adrian Sandu","doi":"10.1145/2530268.2530273","DOIUrl":null,"url":null,"abstract":"Many simulations of evolutionary ordinary and partial differential equations require implicit time integration methods to avoid stability restrictions on the step size. The computation and communication costs associated with solving nonlinear systems at each time step dominates the total simulation cost. Rosenbrock-Krylov (Rosenbrock-K) methods alleviate this major bottleneck by using Krylov space approximations tightly coupled with the time discretization.\n This work studies the performance of Rosenbrock-K methods on accelerated hardware. GPU acceleration is used to expedite computations of the semi-discrete right hand side and the linear-algebra computations in the time integration method. A novel parallelization of the Arnoldi procedure for the construction of the Krylov based approximations of the Jacobian matrix is presented. Rosenbrock-K methods' unique ability to operate almost entirely in a reduced space make them especially suitable for efficient utilization of accelerated hardware, where standard implicit approaches may lead to systems too large for device memory.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CUDA acceleration of a matrix-free Rosenbrock-K method applied to the shallow water equations\",\"authors\":\"P. Tranquilli, Ross Glandon, Adrian Sandu\",\"doi\":\"10.1145/2530268.2530273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many simulations of evolutionary ordinary and partial differential equations require implicit time integration methods to avoid stability restrictions on the step size. The computation and communication costs associated with solving nonlinear systems at each time step dominates the total simulation cost. Rosenbrock-Krylov (Rosenbrock-K) methods alleviate this major bottleneck by using Krylov space approximations tightly coupled with the time discretization.\\n This work studies the performance of Rosenbrock-K methods on accelerated hardware. GPU acceleration is used to expedite computations of the semi-discrete right hand side and the linear-algebra computations in the time integration method. A novel parallelization of the Arnoldi procedure for the construction of the Krylov based approximations of the Jacobian matrix is presented. Rosenbrock-K methods' unique ability to operate almost entirely in a reduced space make them especially suitable for efficient utilization of accelerated hardware, where standard implicit approaches may lead to systems too large for device memory.\",\"PeriodicalId\":259517,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Scala\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Scala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2530268.2530273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2530268.2530273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多演化常微分方程和偏微分方程的模拟需要隐式时间积分方法来避免步长上的稳定性限制。在每个时间步上求解非线性系统的计算和通信费用占仿真总费用的绝大部分。Rosenbrock-Krylov (Rosenbrock-K)方法通过使用Krylov空间近似与时间离散紧密耦合来缓解这一主要瓶颈。本文研究了Rosenbrock-K方法在加速硬件上的性能。在时间积分法中,利用GPU加速加快了半离散右侧的计算和线性代数的计算。提出了一种新的并行化的Arnoldi过程,用于构造基于Krylov的雅可比矩阵近似。Rosenbrock-K方法的独特能力几乎完全在减少的空间中操作,使它们特别适合于有效利用加速硬件,其中标准隐式方法可能导致系统对于设备内存来说太大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CUDA acceleration of a matrix-free Rosenbrock-K method applied to the shallow water equations
Many simulations of evolutionary ordinary and partial differential equations require implicit time integration methods to avoid stability restrictions on the step size. The computation and communication costs associated with solving nonlinear systems at each time step dominates the total simulation cost. Rosenbrock-Krylov (Rosenbrock-K) methods alleviate this major bottleneck by using Krylov space approximations tightly coupled with the time discretization. This work studies the performance of Rosenbrock-K methods on accelerated hardware. GPU acceleration is used to expedite computations of the semi-discrete right hand side and the linear-algebra computations in the time integration method. A novel parallelization of the Arnoldi procedure for the construction of the Krylov based approximations of the Jacobian matrix is presented. Rosenbrock-K methods' unique ability to operate almost entirely in a reduced space make them especially suitable for efficient utilization of accelerated hardware, where standard implicit approaches may lead to systems too large for device memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信