一维Schrödinger-Poisson系统的计算机辅助存在证明

Jonathan Wunderlich, M. Plum
{"title":"一维Schrödinger-Poisson系统的计算机辅助存在证明","authors":"Jonathan Wunderlich, M. Plum","doi":"10.14232/actacyb.24.3.2020.6","DOIUrl":null,"url":null,"abstract":"Motivated by the three-dimensional time-dependent Schrödinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schrödinger-Poisson system using computer-assisted methods. \nStarting from a numerical approximate solution, we compute a bound for its defect, and a norm bound for the inverse of the linearization at the approximate solution. For the latter, eigenvalue bounds play a crucial role, especially for the eigenvalues \"close to\" zero. Therefor, we use the Rayleigh-Ritz method and a corollary of the Temple-Lehmann Theorem to get enclosures of the crucial eigenvalues of the linearization below the essential spectrum. \nWith these data in hand, we can use a fixed-point argument to obtain the desired existence of a non-trivial solution \"nearby\" the approximate one. In addition to the pure existence result, the used methods also provide an enclosure of the exact solution.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-assisted Existence Proofs for One-dimensional Schrödinger-Poisson Systems\",\"authors\":\"Jonathan Wunderlich, M. Plum\",\"doi\":\"10.14232/actacyb.24.3.2020.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the three-dimensional time-dependent Schrödinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schrödinger-Poisson system using computer-assisted methods. \\nStarting from a numerical approximate solution, we compute a bound for its defect, and a norm bound for the inverse of the linearization at the approximate solution. For the latter, eigenvalue bounds play a crucial role, especially for the eigenvalues \\\"close to\\\" zero. Therefor, we use the Rayleigh-Ritz method and a corollary of the Temple-Lehmann Theorem to get enclosures of the crucial eigenvalues of the linearization below the essential spectrum. \\nWith these data in hand, we can use a fixed-point argument to obtain the desired existence of a non-trivial solution \\\"nearby\\\" the approximate one. In addition to the pure existence result, the used methods also provide an enclosure of the exact solution.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.24.3.2020.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.24.3.2020.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三维时间依赖Schrödinger-Poisson系统的激励下,我们用计算机辅助方法证明了一维平稳Schrödinger-Poisson系统非平凡解的存在性。从一个数值近似解出发,计算了其缺陷的界,以及在近似解处线性化逆的范数界。对于后者,特征值界起着至关重要的作用,特别是对于特征值“接近”零的情况。因此,我们利用Rayleigh-Ritz方法和Temple-Lehmann定理的一个推论,得到了在本质谱下线性化的关键特征值的包合。有了这些数据,我们可以使用一个不动点参数来获得在近似解附近的非平凡解的期望存在性。所使用的方法除了提供了纯粹的存在性结果外,还提供了精确解的外壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer-assisted Existence Proofs for One-dimensional Schrödinger-Poisson Systems
Motivated by the three-dimensional time-dependent Schrödinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schrödinger-Poisson system using computer-assisted methods. Starting from a numerical approximate solution, we compute a bound for its defect, and a norm bound for the inverse of the linearization at the approximate solution. For the latter, eigenvalue bounds play a crucial role, especially for the eigenvalues "close to" zero. Therefor, we use the Rayleigh-Ritz method and a corollary of the Temple-Lehmann Theorem to get enclosures of the crucial eigenvalues of the linearization below the essential spectrum. With these data in hand, we can use a fixed-point argument to obtain the desired existence of a non-trivial solution "nearby" the approximate one. In addition to the pure existence result, the used methods also provide an enclosure of the exact solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信