COCA:从更精确的相关性检测中得到更精确的多维直方图

Wei Cao, Xiongpai Qin, Shan Wang
{"title":"COCA:从更精确的相关性检测中得到更精确的多维直方图","authors":"Wei Cao, Xiongpai Qin, Shan Wang","doi":"10.1109/WAIM.2008.21","DOIUrl":null,"url":null,"abstract":"Detecting and exploiting correlations among columns in relational databases are of great value for query optimizers to generate better query execution plans (QEPs). We propose a more robust and informative metric, namely, entropy correlation coefficients, other than chi-square test to detect correlations among columns in large datasets. We introduce a novel yet simple kind of multi-dimensional synopses named COCA-Hist to cope with different correlations in databases. With the aid of the precise metric of entropy correlation coefficients, correlations of various degrees can be detected effectively; when correlation coefficients testify to mutual independence among columns, the AVI (attribute value independence) assumption can be adopted undoubtedly. COCA can also serve as a data-mining tool with superior qualities as CORDS does. We demonstrate the effectiveness and accuracy of our approach by several experiments.","PeriodicalId":217119,"journal":{"name":"2008 The Ninth International Conference on Web-Age Information Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COCA: More Accurate Multidimensional Histograms out of More Accurate Correlations Detection\",\"authors\":\"Wei Cao, Xiongpai Qin, Shan Wang\",\"doi\":\"10.1109/WAIM.2008.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting and exploiting correlations among columns in relational databases are of great value for query optimizers to generate better query execution plans (QEPs). We propose a more robust and informative metric, namely, entropy correlation coefficients, other than chi-square test to detect correlations among columns in large datasets. We introduce a novel yet simple kind of multi-dimensional synopses named COCA-Hist to cope with different correlations in databases. With the aid of the precise metric of entropy correlation coefficients, correlations of various degrees can be detected effectively; when correlation coefficients testify to mutual independence among columns, the AVI (attribute value independence) assumption can be adopted undoubtedly. COCA can also serve as a data-mining tool with superior qualities as CORDS does. We demonstrate the effectiveness and accuracy of our approach by several experiments.\",\"PeriodicalId\":217119,\"journal\":{\"name\":\"2008 The Ninth International Conference on Web-Age Information Management\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The Ninth International Conference on Web-Age Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAIM.2008.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Ninth International Conference on Web-Age Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAIM.2008.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

检测和利用关系数据库中列之间的相关性对于查询优化器生成更好的查询执行计划(qep)非常有价值。我们提出了一个更稳健和信息丰富的度量,即熵相关系数,而不是卡方检验来检测大型数据集中列之间的相关性。为了处理数据库中不同的相关性,我们引入了一种新颖而简单的多维概要——COCA-Hist。借助熵相关系数的精确度量,可以有效地检测出不同程度的相关性;当相关系数证明列之间相互独立时,可以采用属性值独立假设。与cord一样,COCA也可以作为一种具有卓越品质的数据挖掘工具。通过几个实验证明了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COCA: More Accurate Multidimensional Histograms out of More Accurate Correlations Detection
Detecting and exploiting correlations among columns in relational databases are of great value for query optimizers to generate better query execution plans (QEPs). We propose a more robust and informative metric, namely, entropy correlation coefficients, other than chi-square test to detect correlations among columns in large datasets. We introduce a novel yet simple kind of multi-dimensional synopses named COCA-Hist to cope with different correlations in databases. With the aid of the precise metric of entropy correlation coefficients, correlations of various degrees can be detected effectively; when correlation coefficients testify to mutual independence among columns, the AVI (attribute value independence) assumption can be adopted undoubtedly. COCA can also serve as a data-mining tool with superior qualities as CORDS does. We demonstrate the effectiveness and accuracy of our approach by several experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信