表示介绍

C. A. Abad
{"title":"表示介绍","authors":"C. A. Abad","doi":"10.1201/9781482268713-21","DOIUrl":null,"url":null,"abstract":"These are lecture notes prepared for a minicourse given at the Cimpa Research School Algebraic and geometric aspects of representation the- ory, held in Curitiba, Brazil in March 2013. The purpose of the course is to provide an introduction to the study of representations of braid groups. Three general classes of representations of braid groups are considered: homological representations via mapping class groups, monodromy representations via the Knizhnik-Zamolodchikov connection, and solutions of the Yang-Baxter equa- tion via quasi-triangular bialgebras. Some of the remarkable relations between these three dierent constructions are described.","PeriodicalId":153733,"journal":{"name":"Evolutionary Computation 1","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction to representations\",\"authors\":\"C. A. Abad\",\"doi\":\"10.1201/9781482268713-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These are lecture notes prepared for a minicourse given at the Cimpa Research School Algebraic and geometric aspects of representation the- ory, held in Curitiba, Brazil in March 2013. The purpose of the course is to provide an introduction to the study of representations of braid groups. Three general classes of representations of braid groups are considered: homological representations via mapping class groups, monodromy representations via the Knizhnik-Zamolodchikov connection, and solutions of the Yang-Baxter equa- tion via quasi-triangular bialgebras. Some of the remarkable relations between these three dierent constructions are described.\",\"PeriodicalId\":153733,\"journal\":{\"name\":\"Evolutionary Computation 1\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781482268713-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781482268713-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这些是为2013年3月在巴西库里蒂巴举行的Cimpa研究学院代数和几何表征方面的迷你课程准备的讲义。本课程的目的是介绍辫状体群表示的研究。考虑了辫群的三种一般表示:通过映射类群的同调表示,通过Knizhnik-Zamolodchikov连接的单列表示,以及通过拟三角双代数的Yang-Baxter方程的解。本文描述了这三种不同结构之间的一些显著关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to representations
These are lecture notes prepared for a minicourse given at the Cimpa Research School Algebraic and geometric aspects of representation the- ory, held in Curitiba, Brazil in March 2013. The purpose of the course is to provide an introduction to the study of representations of braid groups. Three general classes of representations of braid groups are considered: homological representations via mapping class groups, monodromy representations via the Knizhnik-Zamolodchikov connection, and solutions of the Yang-Baxter equa- tion via quasi-triangular bialgebras. Some of the remarkable relations between these three dierent constructions are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信