超越距离测量的相似性

Feng Kang, Rong Jin, S. Hoi
{"title":"超越距离测量的相似性","authors":"Feng Kang, Rong Jin, S. Hoi","doi":"10.5555/1931390.1931434","DOIUrl":null,"url":null,"abstract":"One of the keys issues to content-based image retrieval is the similarity measurement of images. Images are represented as points in the space of low-level visual features and most similarity measures are based on certain distance measurement between these features. Given a distance metric, two images with shorter distance are deemed to more similar than images that are far away. The well-known problem with these similarity measures is the semantic gap, namely two images separated by large distance could share the same semantic content. In this paper, we propose a novel similarity measure of images that goes beyond the distance measurement. The key idea is to exploit the clustering structure of images when a large number of images are present. The similarity of two images is determined not only by their Euclidean distance in the space of visual features but also by the likelihood for them to be clustered together, which is further estimated using a marginalized kernel. Our empirical studies with COREL datasets have shown that the proposed similarity measure is effective for traditional content-based image retrieval as well as user relevance feedback.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Similarity Beyond Distance Measurement\",\"authors\":\"Feng Kang, Rong Jin, S. Hoi\",\"doi\":\"10.5555/1931390.1931434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the keys issues to content-based image retrieval is the similarity measurement of images. Images are represented as points in the space of low-level visual features and most similarity measures are based on certain distance measurement between these features. Given a distance metric, two images with shorter distance are deemed to more similar than images that are far away. The well-known problem with these similarity measures is the semantic gap, namely two images separated by large distance could share the same semantic content. In this paper, we propose a novel similarity measure of images that goes beyond the distance measurement. The key idea is to exploit the clustering structure of images when a large number of images are present. The similarity of two images is determined not only by their Euclidean distance in the space of visual features but also by the likelihood for them to be clustered together, which is further estimated using a marginalized kernel. Our empirical studies with COREL datasets have shown that the proposed similarity measure is effective for traditional content-based image retrieval as well as user relevance feedback.\",\"PeriodicalId\":120472,\"journal\":{\"name\":\"RIAO Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIAO Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1931390.1931434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1931390.1931434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于内容的图像检索的关键问题之一是图像的相似性度量。图像被表示为低层次视觉特征空间中的点,大多数相似性度量是基于这些特征之间的一定距离度量。给定距离度量,距离较近的两幅图像被认为比距离较远的图像更相似。这些相似度度量的一个众所周知的问题是语义差距,即两个距离较远的图像可能共享相同的语义内容。本文提出了一种超越距离测量的图像相似性度量方法。关键思想是在大量图像存在时利用图像的聚类结构。两幅图像的相似性不仅取决于它们在视觉特征空间中的欧几里得距离,还取决于它们聚在一起的可能性,并进一步使用边缘核来估计。我们对COREL数据集的实证研究表明,所提出的相似性度量对于传统的基于内容的图像检索以及用户相关性反馈都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Beyond Distance Measurement
One of the keys issues to content-based image retrieval is the similarity measurement of images. Images are represented as points in the space of low-level visual features and most similarity measures are based on certain distance measurement between these features. Given a distance metric, two images with shorter distance are deemed to more similar than images that are far away. The well-known problem with these similarity measures is the semantic gap, namely two images separated by large distance could share the same semantic content. In this paper, we propose a novel similarity measure of images that goes beyond the distance measurement. The key idea is to exploit the clustering structure of images when a large number of images are present. The similarity of two images is determined not only by their Euclidean distance in the space of visual features but also by the likelihood for them to be clustered together, which is further estimated using a marginalized kernel. Our empirical studies with COREL datasets have shown that the proposed similarity measure is effective for traditional content-based image retrieval as well as user relevance feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信