k4 -非次要链接和链接图的结构和枚举

Q2 Mathematics
Juanjo Rué , Dimitrios M. Thilikos , Vasiliki Velona
{"title":"k4 -非次要链接和链接图的结构和枚举","authors":"Juanjo Rué ,&nbsp;Dimitrios M. Thilikos ,&nbsp;Vasiliki Velona","doi":"10.1016/j.endm.2018.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>We study the class <span><math><mi>L</mi></math></span> of link types that admit a K<sub>4</sub>-minor-free diagram, i.e., they can be projected on the plane so that the resulting graph does not contain any subdivision of K<sub>4</sub>. We prove that <span><math><mi>L</mi></math></span> is the closure of a subclass of torus links under the operation of connected sum. Using this structural result, we enumerate <span><math><mi>L</mi></math></span> and subclasses of it, with respect to the minimal number of crossings or edges in a projection of <span><math><mi>L</mi><mo>∈</mo><mi>L</mi></math></span>. Further, we enumerate (both exactly and asymptotically) all connected K<sub>4</sub>-minor-free link diagrams, all minimal connected K<sub>4</sub>-minor-free link diagrams, and all K<sub>4</sub>-minor-free diagrams of the unknot.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.021","citationCount":"1","resultStr":"{\"title\":\"Structure and Enumeration of K4-minor-free links and link diagrams\",\"authors\":\"Juanjo Rué ,&nbsp;Dimitrios M. Thilikos ,&nbsp;Vasiliki Velona\",\"doi\":\"10.1016/j.endm.2018.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the class <span><math><mi>L</mi></math></span> of link types that admit a K<sub>4</sub>-minor-free diagram, i.e., they can be projected on the plane so that the resulting graph does not contain any subdivision of K<sub>4</sub>. We prove that <span><math><mi>L</mi></math></span> is the closure of a subclass of torus links under the operation of connected sum. Using this structural result, we enumerate <span><math><mi>L</mi></math></span> and subclasses of it, with respect to the minimal number of crossings or edges in a projection of <span><math><mi>L</mi><mo>∈</mo><mi>L</mi></math></span>. Further, we enumerate (both exactly and asymptotically) all connected K<sub>4</sub>-minor-free link diagrams, all minimal connected K<sub>4</sub>-minor-free link diagrams, and all K<sub>4</sub>-minor-free diagrams of the unknot.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.021\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了一类允许有K4-次要无图的链路类型,即它们可以被投影到平面上,使得得到的图不包含K4的任何细分。证明了L是环面连杆的一个子类在连通和作用下的闭包。利用这一结构结果,我们列举了L及其子类,关于L∈L的投影中交叉或边的最小数量。进一步,我们(精确地和渐近地)列举了所有连通的k4 -小自由连杆图,所有最小连通的k4 -小自由连杆图,以及所有解结的k4 -小自由连杆图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and Enumeration of K4-minor-free links and link diagrams

We study the class L of link types that admit a K4-minor-free diagram, i.e., they can be projected on the plane so that the resulting graph does not contain any subdivision of K4. We prove that L is the closure of a subclass of torus links under the operation of connected sum. Using this structural result, we enumerate L and subclasses of it, with respect to the minimal number of crossings or edges in a projection of LL. Further, we enumerate (both exactly and asymptotically) all connected K4-minor-free link diagrams, all minimal connected K4-minor-free link diagrams, and all K4-minor-free diagrams of the unknot.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信