血吸虫肝纤维化分型

D. Ashour, D. A. Rayia, N. Dey, A. Ashour, A. Hawas, M. Al-Otaibi
{"title":"血吸虫肝纤维化分型","authors":"D. Ashour, D. A. Rayia, N. Dey, A. Ashour, A. Hawas, M. Al-Otaibi","doi":"10.4018/IJNCR.2018040101","DOIUrl":null,"url":null,"abstract":"Schistosomiasis is serious liver tissues' parasitic disease that leads to liver fibrosis. Microscopic liver tissue images at different stages can be used for assessment of the fibrosis level. In the current article, the different stages of granuloma were classified after features extraction. Statistical features extraction was used to extract the significant features that characterized each stage. Afterward, different classifiers, namely the Decision Tree, Nearest Neighbor and the Neural Network are employed to carry out the classification process. The results established that the cubic k-NN, cosine k-NN and medium k-NN classifiers achieved superior classification accuracy compared to the other classifiers with 88.3% accuracy value.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Schistosomal Hepatic Fibrosis Classification\",\"authors\":\"D. Ashour, D. A. Rayia, N. Dey, A. Ashour, A. Hawas, M. Al-Otaibi\",\"doi\":\"10.4018/IJNCR.2018040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schistosomiasis is serious liver tissues' parasitic disease that leads to liver fibrosis. Microscopic liver tissue images at different stages can be used for assessment of the fibrosis level. In the current article, the different stages of granuloma were classified after features extraction. Statistical features extraction was used to extract the significant features that characterized each stage. Afterward, different classifiers, namely the Decision Tree, Nearest Neighbor and the Neural Network are employed to carry out the classification process. The results established that the cubic k-NN, cosine k-NN and medium k-NN classifiers achieved superior classification accuracy compared to the other classifiers with 88.3% accuracy value.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJNCR.2018040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

血吸虫病是严重的肝组织寄生虫病,可导致肝纤维化。不同阶段的显微肝组织图像可用于评估纤维化程度。本文通过特征提取对肉芽肿的不同分期进行分类。统计特征提取用于提取表征每个阶段的显著特征。然后,使用不同的分类器,即决策树,最近邻和神经网络进行分类过程。结果表明,与其他分类器相比,三次k-NN、余弦k-NN和中等k-NN分类器的分类精度达到了88.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schistosomal Hepatic Fibrosis Classification
Schistosomiasis is serious liver tissues' parasitic disease that leads to liver fibrosis. Microscopic liver tissue images at different stages can be used for assessment of the fibrosis level. In the current article, the different stages of granuloma were classified after features extraction. Statistical features extraction was used to extract the significant features that characterized each stage. Afterward, different classifiers, namely the Decision Tree, Nearest Neighbor and the Neural Network are employed to carry out the classification process. The results established that the cubic k-NN, cosine k-NN and medium k-NN classifiers achieved superior classification accuracy compared to the other classifiers with 88.3% accuracy value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信