局部放电数据小波去噪的阈值选择

P. Agoris, S. Meijer, E. Gulski, J. Smit
{"title":"局部放电数据小波去噪的阈值选择","authors":"P. Agoris, S. Meijer, E. Gulski, J. Smit","doi":"10.1109/ELINSL.2004.1380450","DOIUrl":null,"url":null,"abstract":"UHF partial discharge (PD) measurements taken onsite are frequently affected by noise due to external disturbances. In order to locate the discharge source, the PD-signals have to be accurately processed to calculate the arrival time in each sensor. A wavelet based denoising technique is used to isolate the PD signals from the noise. The technique utilizes the one-dimensional discrete wavelet transform and the soft and hard thresholding are compared. Crucial is the choice of threshold level, distinguishing between coefficients related with noise and those associated with the PD signal. Four threshold criteria: the Stein's unbiased risk estimator, its Heuristic variance, the universal logarithmic threshold and the minimax are investigated. Finally, the technique is tested on PD signals detected in a power transformer.","PeriodicalId":342687,"journal":{"name":"Conference Record of the 2004 IEEE International Symposium on Electrical Insulation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Threshold selection for wavelet denoising of partial discharge data\",\"authors\":\"P. Agoris, S. Meijer, E. Gulski, J. Smit\",\"doi\":\"10.1109/ELINSL.2004.1380450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UHF partial discharge (PD) measurements taken onsite are frequently affected by noise due to external disturbances. In order to locate the discharge source, the PD-signals have to be accurately processed to calculate the arrival time in each sensor. A wavelet based denoising technique is used to isolate the PD signals from the noise. The technique utilizes the one-dimensional discrete wavelet transform and the soft and hard thresholding are compared. Crucial is the choice of threshold level, distinguishing between coefficients related with noise and those associated with the PD signal. Four threshold criteria: the Stein's unbiased risk estimator, its Heuristic variance, the universal logarithmic threshold and the minimax are investigated. Finally, the technique is tested on PD signals detected in a power transformer.\",\"PeriodicalId\":342687,\"journal\":{\"name\":\"Conference Record of the 2004 IEEE International Symposium on Electrical Insulation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2004 IEEE International Symposium on Electrical Insulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINSL.2004.1380450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2004 IEEE International Symposium on Electrical Insulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINSL.2004.1380450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

现场进行的UHF局部放电(PD)测量经常受到外部干扰噪声的影响。为了定位放电源,必须对pd信号进行精确处理,以计算每个传感器的到达时间。采用小波去噪技术将PD信号从噪声中分离出来。该方法利用一维离散小波变换,并对软阈值和硬阈值进行了比较。关键是阈值水平的选择,区分与噪声相关的系数和与PD信号相关的系数。研究了四种阈值准则:Stein无偏风险估计量、其启发式方差、通用对数阈值和极大极小值。最后,对某电力变压器的局部放电信号进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold selection for wavelet denoising of partial discharge data
UHF partial discharge (PD) measurements taken onsite are frequently affected by noise due to external disturbances. In order to locate the discharge source, the PD-signals have to be accurately processed to calculate the arrival time in each sensor. A wavelet based denoising technique is used to isolate the PD signals from the noise. The technique utilizes the one-dimensional discrete wavelet transform and the soft and hard thresholding are compared. Crucial is the choice of threshold level, distinguishing between coefficients related with noise and those associated with the PD signal. Four threshold criteria: the Stein's unbiased risk estimator, its Heuristic variance, the universal logarithmic threshold and the minimax are investigated. Finally, the technique is tested on PD signals detected in a power transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信