基于神经网络的双三相永磁同步电机自适应速度PI控制器的实现

Zhenxiao Yin, H. Zhao
{"title":"基于神经网络的双三相永磁同步电机自适应速度PI控制器的实现","authors":"Zhenxiao Yin, H. Zhao","doi":"10.1109/IECON49645.2022.9969086","DOIUrl":null,"url":null,"abstract":"This paper provides a preliminary study on applying Neural Network (NN) based proportional and integral (PI) controllers with the positional PI principle. This method is set into the speed loop of a dual-three-phase permanent magnet synchronous motor (PMSM), where the vector space decomposition method (VSD) is utilized. The proposed methods are single-layer neural network (SNN), backpropagation neural network (BPNN), and radial basis function neural network (RBFNN). These methods aim to reduce the overshoot of the speed tracking in control problems. By optimizing the current reference output, the copper loss can also be reduced at the same time. Finally, the control performances using traditional PI, SNN-based PI, BPNN-based PI, and RBFNN-based PI are compared by adopting a self-defined scorecard with different evaluation indices.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Implementation of Various Neural-Network-Based Adaptive Speed PI Controllers for Dual-Three-Phase PMSM\",\"authors\":\"Zhenxiao Yin, H. Zhao\",\"doi\":\"10.1109/IECON49645.2022.9969086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a preliminary study on applying Neural Network (NN) based proportional and integral (PI) controllers with the positional PI principle. This method is set into the speed loop of a dual-three-phase permanent magnet synchronous motor (PMSM), where the vector space decomposition method (VSD) is utilized. The proposed methods are single-layer neural network (SNN), backpropagation neural network (BPNN), and radial basis function neural network (RBFNN). These methods aim to reduce the overshoot of the speed tracking in control problems. By optimizing the current reference output, the copper loss can also be reduced at the same time. Finally, the control performances using traditional PI, SNN-based PI, BPNN-based PI, and RBFNN-based PI are compared by adopting a self-defined scorecard with different evaluation indices.\",\"PeriodicalId\":125740,\"journal\":{\"name\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON49645.2022.9969086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9969086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文对基于位置PI原理的神经网络比例积分控制器的应用进行了初步研究。将该方法设置到双三相永磁同步电机(PMSM)的速度环中,采用矢量空间分解方法(VSD)。提出的方法有单层神经网络(SNN)、反向传播神经网络(BPNN)和径向基函数神经网络(RBFNN)。这些方法旨在减少控制问题中速度跟踪的超调。通过优化电流基准输出,也可以同时降低铜损耗。最后,采用具有不同评价指标的自定义计分卡,比较传统PI、基于snn的PI、基于bpnn的PI和基于rbfnn的PI的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Various Neural-Network-Based Adaptive Speed PI Controllers for Dual-Three-Phase PMSM
This paper provides a preliminary study on applying Neural Network (NN) based proportional and integral (PI) controllers with the positional PI principle. This method is set into the speed loop of a dual-three-phase permanent magnet synchronous motor (PMSM), where the vector space decomposition method (VSD) is utilized. The proposed methods are single-layer neural network (SNN), backpropagation neural network (BPNN), and radial basis function neural network (RBFNN). These methods aim to reduce the overshoot of the speed tracking in control problems. By optimizing the current reference output, the copper loss can also be reduced at the same time. Finally, the control performances using traditional PI, SNN-based PI, BPNN-based PI, and RBFNN-based PI are compared by adopting a self-defined scorecard with different evaluation indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信