基于卷积神经网络的实时性别分类

P. Mishra, Neha Singh, Pallavi Chavan
{"title":"基于卷积神经网络的实时性别分类","authors":"P. Mishra, Neha Singh, Pallavi Chavan","doi":"10.1051/itmconf/20214003047","DOIUrl":null,"url":null,"abstract":"This paper presents real time gender classification using Convolutional Neural Network. Automatic classification of gender has become important to an growing array of applications particularly with the emergence of web networks and social media. Slavery was a significant moral problem in the nineteenth century. It was a struggle toward fascism in the modern period. The fight for gender equality across the world, as well as the need to divide gender for meaningful purposes, would, we conclude, be the most critical moral issue of this century. Differences are needed at different places, such as restrooms for men and restrooms for women; attire for men and attire for women; and so on, in order to plan and advance further in the technological sector. To decrease crime rates, to place the advertisements in malls precisely attracting more people based on gender, to keep track of genders in respective toilets or in trains, for personal services, etc. The authors propose the gender classification dilemma for real-time applications, in which a tool decides if the faces within the exposure belong to a female or a male. The primary fundamental region of experimentation in this venture is adjusting a few already distributed, successful designs utilized for gender orientation classification. Generally, facial structure variations have an effect on gender classification accuracy considerably, as a result of facial form and skin texture modification as they become old. This requires re- examination on the sexual orientation classification framework. By learning representations through the utilization of deep-convolutional neural networks (CNN), a major increase in performance is obtained on these tasks.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Time Gender Classification using Convolutional Neural Network\",\"authors\":\"P. Mishra, Neha Singh, Pallavi Chavan\",\"doi\":\"10.1051/itmconf/20214003047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents real time gender classification using Convolutional Neural Network. Automatic classification of gender has become important to an growing array of applications particularly with the emergence of web networks and social media. Slavery was a significant moral problem in the nineteenth century. It was a struggle toward fascism in the modern period. The fight for gender equality across the world, as well as the need to divide gender for meaningful purposes, would, we conclude, be the most critical moral issue of this century. Differences are needed at different places, such as restrooms for men and restrooms for women; attire for men and attire for women; and so on, in order to plan and advance further in the technological sector. To decrease crime rates, to place the advertisements in malls precisely attracting more people based on gender, to keep track of genders in respective toilets or in trains, for personal services, etc. The authors propose the gender classification dilemma for real-time applications, in which a tool decides if the faces within the exposure belong to a female or a male. The primary fundamental region of experimentation in this venture is adjusting a few already distributed, successful designs utilized for gender orientation classification. Generally, facial structure variations have an effect on gender classification accuracy considerably, as a result of facial form and skin texture modification as they become old. This requires re- examination on the sexual orientation classification framework. By learning representations through the utilization of deep-convolutional neural networks (CNN), a major increase in performance is obtained on these tasks.\",\"PeriodicalId\":433898,\"journal\":{\"name\":\"ITM Web of Conferences\",\"volume\":\"05 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITM Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/itmconf/20214003047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20214003047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于卷积神经网络的实时性别分类方法。随着网络和社交媒体的出现,性别自动分类对越来越多的应用程序变得非常重要。奴隶制在19世纪是一个重大的道德问题。在现代,这是一场向法西斯主义的斗争。我们认为,在世界范围内争取性别平等,以及为有意义的目的划分性别的必要性,将是本世纪最关键的道德问题。不同的地方需要区别对待,比如男厕所和女厕所;男女服装;等等,以便在技术领域进一步规划和推进。为了降低犯罪率,在购物中心准确地放置广告,吸引更多的人基于性别,在各自的厕所或火车上跟踪性别,个人服务等。作者提出了实时应用的性别分类困境,其中一个工具决定曝光中的面孔是属于女性还是男性。这一尝试的主要基本领域是调整一些已经分布的、成功的用于性别倾向分类的设计。一般来说,面部结构的变化对性别分类的准确性有很大的影响,因为随着年龄的增长,面部形状和皮肤纹理会发生变化。这就需要重新审视性取向分类框架。通过利用深度卷积神经网络(CNN)学习表征,这些任务的性能得到了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Time Gender Classification using Convolutional Neural Network
This paper presents real time gender classification using Convolutional Neural Network. Automatic classification of gender has become important to an growing array of applications particularly with the emergence of web networks and social media. Slavery was a significant moral problem in the nineteenth century. It was a struggle toward fascism in the modern period. The fight for gender equality across the world, as well as the need to divide gender for meaningful purposes, would, we conclude, be the most critical moral issue of this century. Differences are needed at different places, such as restrooms for men and restrooms for women; attire for men and attire for women; and so on, in order to plan and advance further in the technological sector. To decrease crime rates, to place the advertisements in malls precisely attracting more people based on gender, to keep track of genders in respective toilets or in trains, for personal services, etc. The authors propose the gender classification dilemma for real-time applications, in which a tool decides if the faces within the exposure belong to a female or a male. The primary fundamental region of experimentation in this venture is adjusting a few already distributed, successful designs utilized for gender orientation classification. Generally, facial structure variations have an effect on gender classification accuracy considerably, as a result of facial form and skin texture modification as they become old. This requires re- examination on the sexual orientation classification framework. By learning representations through the utilization of deep-convolutional neural networks (CNN), a major increase in performance is obtained on these tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信