C-Algl网:病理图像产生诊断结果

Zongkai Lian, Haiqiong Yang, Fan Wu, Mingxin Li, Shancheng Jiang
{"title":"C-Algl网:病理图像产生诊断结果","authors":"Zongkai Lian, Haiqiong Yang, Fan Wu, Mingxin Li, Shancheng Jiang","doi":"10.1109/ISBIWorkshops50223.2020.9153419","DOIUrl":null,"url":null,"abstract":"The lack of a clear correspondence between feature of lesion areas and corresponding pathological characteristics and the scarcity of high-quality histopathological image sets pose a great challenge to the establishment of interpretable computer-aided diagnostic systems. Therefore, we propose a new deep learning-based model, named as C-ALGL model (CNN-AttendLSTM-GenerateLSTM), which is able to generate visual image results with diagnostic descriptions from input histopathological images in one pass. We use an improved recurrent neural network-based structure that incorporates attentional mechanisms in the LSTM interlayer with altered LSTM parameter delivery pathways. The structure generates visualization results at the attentional mechanism and diagnostic text at the end-connected full-connected layer. We conducted a large number of experiments on the PATHOLOGY-11 skin pathology image dataset and the experimental results proved that the C-ALGL model performed better than benchmark models on this task.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C-Algl Net: Pathological Images Generate Diagnostic Results\",\"authors\":\"Zongkai Lian, Haiqiong Yang, Fan Wu, Mingxin Li, Shancheng Jiang\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of a clear correspondence between feature of lesion areas and corresponding pathological characteristics and the scarcity of high-quality histopathological image sets pose a great challenge to the establishment of interpretable computer-aided diagnostic systems. Therefore, we propose a new deep learning-based model, named as C-ALGL model (CNN-AttendLSTM-GenerateLSTM), which is able to generate visual image results with diagnostic descriptions from input histopathological images in one pass. We use an improved recurrent neural network-based structure that incorporates attentional mechanisms in the LSTM interlayer with altered LSTM parameter delivery pathways. The structure generates visualization results at the attentional mechanism and diagnostic text at the end-connected full-connected layer. We conducted a large number of experiments on the PATHOLOGY-11 skin pathology image dataset and the experimental results proved that the C-ALGL model performed better than benchmark models on this task.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

病变区域特征与相应病理特征之间缺乏明确的对应关系,高质量的组织病理图像集的缺乏,给建立可解释的计算机辅助诊断系统带来了很大的挑战。因此,我们提出了一种新的基于深度学习的模型,命名为C-ALGL模型(CNN-AttendLSTM-GenerateLSTM),该模型能够一次通过输入的组织病理学图像生成具有诊断描述的视觉图像结果。我们使用了一种改进的基于循环神经网络的结构,该结构将LSTM中间层中的注意机制与改变的LSTM参数传递路径结合起来。该结构在注意机制生成可视化结果,在端连接全连接层生成诊断文本。我们在病理学-11皮肤病理图像数据集上进行了大量的实验,实验结果证明C-ALGL模型在这项任务上的表现优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C-Algl Net: Pathological Images Generate Diagnostic Results
The lack of a clear correspondence between feature of lesion areas and corresponding pathological characteristics and the scarcity of high-quality histopathological image sets pose a great challenge to the establishment of interpretable computer-aided diagnostic systems. Therefore, we propose a new deep learning-based model, named as C-ALGL model (CNN-AttendLSTM-GenerateLSTM), which is able to generate visual image results with diagnostic descriptions from input histopathological images in one pass. We use an improved recurrent neural network-based structure that incorporates attentional mechanisms in the LSTM interlayer with altered LSTM parameter delivery pathways. The structure generates visualization results at the attentional mechanism and diagnostic text at the end-connected full-connected layer. We conducted a large number of experiments on the PATHOLOGY-11 skin pathology image dataset and the experimental results proved that the C-ALGL model performed better than benchmark models on this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信