关于完整的正则化的拓扑对应物𝒟-modules

A. D'agnolo, M. Kashiwara
{"title":"关于完整的正则化的拓扑对应物𝒟-modules","authors":"A. D'agnolo, M. Kashiwara","doi":"10.5802/jep.140","DOIUrl":null,"url":null,"abstract":"On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $\\mathcal{M}\\mapsto\\mathcal{M}_{\\mathrm{reg}}$, called regularization. Recall that $\\mathcal{M}_{\\mathrm{reg}}$ is reconstructed from the de Rham complex of $\\mathcal{M}$ by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of their properties. In particular, we provide a germ formula for the sheafification of enhanced specialization and microlocalization.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On a topological counterpart of regularization for holonomic 𝒟-modules\",\"authors\":\"A. D'agnolo, M. Kashiwara\",\"doi\":\"10.5802/jep.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $\\\\mathcal{M}\\\\mapsto\\\\mathcal{M}_{\\\\mathrm{reg}}$, called regularization. Recall that $\\\\mathcal{M}_{\\\\mathrm{reg}}$ is reconstructed from the de Rham complex of $\\\\mathcal{M}$ by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of their properties. In particular, we provide a germ formula for the sheafification of enhanced specialization and microlocalization.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在复流形上,正则完整d模的范畴嵌入完整d模的范畴有一个左拟逆函子$\mathcal{M}\映射到\mathcal{M}_{\ mathm {reg}}$,称为正则化。回想一下,$\mathcal{M}_{\ mathm {reg}}$是由$\mathcal{M}$的de Rham复合体通过正则黎曼-希尔伯特通信重建的。类似地,在拓扑空间上,将轴嵌入到增强轴中具有一个左拟逆函子,这里称为轴化。正则化和非对称化是由不规则的黎曼-希尔伯特对应关系交织在一起的。在这里,我们研究它们的一些性质。特别是,我们提供了一个胚芽公式,以加强专业化和微定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a topological counterpart of regularization for holonomic 𝒟-modules
On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $\mathcal{M}\mapsto\mathcal{M}_{\mathrm{reg}}$, called regularization. Recall that $\mathcal{M}_{\mathrm{reg}}$ is reconstructed from the de Rham complex of $\mathcal{M}$ by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of their properties. In particular, we provide a germ formula for the sheafification of enhanced specialization and microlocalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信