使用健康声明的2型糖尿病风险预测模型

M. Nagata, Kohichi Takai, K. Yasuda, P. Heracleous, Akio Yoneyama
{"title":"使用健康声明的2型糖尿病风险预测模型","authors":"M. Nagata, Kohichi Takai, K. Yasuda, P. Heracleous, Akio Yoneyama","doi":"10.18653/v1/W18-2322","DOIUrl":null,"url":null,"abstract":"This study focuses on highly accurate prediction of the onset of type-2 diabetes. We investigated whether prediction accuracy can be improved by utilizing lab test data obtained from health checkups and incorporating health claim text data such as medically diagnosed diseases with ICD10 codes and pharmacy information. In a previous study, prediction accuracy was increased slightly by adding diagnosis disease name and independent variables such as prescription medicine. Therefore, in the current study we explored more suitable models for prediction by using state-of-the-art techniques such as XGBoost and long short-term memory (LSTM) based on recurrent neural networks. In the current study, text data was vectorized using word2vec, and the prediction model was compared with logistic regression. The results obtained confirmed that onset of type-2 diabetes can be predicted with a high degree of accuracy when the XGBoost model is used.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Prediction Models for Risk of Type-2 Diabetes Using Health Claims\",\"authors\":\"M. Nagata, Kohichi Takai, K. Yasuda, P. Heracleous, Akio Yoneyama\",\"doi\":\"10.18653/v1/W18-2322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on highly accurate prediction of the onset of type-2 diabetes. We investigated whether prediction accuracy can be improved by utilizing lab test data obtained from health checkups and incorporating health claim text data such as medically diagnosed diseases with ICD10 codes and pharmacy information. In a previous study, prediction accuracy was increased slightly by adding diagnosis disease name and independent variables such as prescription medicine. Therefore, in the current study we explored more suitable models for prediction by using state-of-the-art techniques such as XGBoost and long short-term memory (LSTM) based on recurrent neural networks. In the current study, text data was vectorized using word2vec, and the prediction model was compared with logistic regression. The results obtained confirmed that onset of type-2 diabetes can be predicted with a high degree of accuracy when the XGBoost model is used.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-2322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本研究的重点是高度准确地预测2型糖尿病的发病。我们研究了利用从健康检查中获得的实验室测试数据和结合健康声明文本数据(如医学诊断疾病与ICD10代码和药房信息)是否可以提高预测准确性。在之前的研究中,通过添加诊断疾病名称和处方药物等自变量,预测准确率略有提高。因此,在当前的研究中,我们通过使用最先进的技术,如XGBoost和基于循环神经网络的长短期记忆(LSTM),探索了更合适的预测模型。在本研究中,使用word2vec对文本数据进行矢量化,并将预测模型与逻辑回归进行比较。研究结果证实,使用XGBoost模型可以高度准确地预测2型糖尿病的发病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction Models for Risk of Type-2 Diabetes Using Health Claims
This study focuses on highly accurate prediction of the onset of type-2 diabetes. We investigated whether prediction accuracy can be improved by utilizing lab test data obtained from health checkups and incorporating health claim text data such as medically diagnosed diseases with ICD10 codes and pharmacy information. In a previous study, prediction accuracy was increased slightly by adding diagnosis disease name and independent variables such as prescription medicine. Therefore, in the current study we explored more suitable models for prediction by using state-of-the-art techniques such as XGBoost and long short-term memory (LSTM) based on recurrent neural networks. In the current study, text data was vectorized using word2vec, and the prediction model was compared with logistic regression. The results obtained confirmed that onset of type-2 diabetes can be predicted with a high degree of accuracy when the XGBoost model is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信