用仿生层次锥形微结构控制湿润状态

I. Park, M. Fernandino, C. Dorao
{"title":"用仿生层次锥形微结构控制湿润状态","authors":"I. Park, M. Fernandino, C. Dorao","doi":"10.1115/ICNMM2018-7653","DOIUrl":null,"url":null,"abstract":"Achieving a high apparent contact angle with a low contact angle hysteresis represent a major enabling step in applications by the self-cleaning property. In this work, bio-mimetic inspired structures complemented with silanization coating are presented for developing surfaces with a high apparent contact angle with a low contact angle hysteresis. The structures are based on hierarchical conical structures with the different geometric parameter. It was observed that the fabricated surface has high apparent contact angle and low contact angle hysteresis. For that, bio-mimetic texturing of surface and silanization coating can be applied. In this study, hierarchical conical structures were fabricated. The shape of the structures has been inspired from the surface from nature. Moreover, the effect of the silanization coating on the surfaces which has different geometric parameter has been identified.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the Wetting State With Bio-Mimetic Hierarchical Conical Microstructures\",\"authors\":\"I. Park, M. Fernandino, C. Dorao\",\"doi\":\"10.1115/ICNMM2018-7653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving a high apparent contact angle with a low contact angle hysteresis represent a major enabling step in applications by the self-cleaning property. In this work, bio-mimetic inspired structures complemented with silanization coating are presented for developing surfaces with a high apparent contact angle with a low contact angle hysteresis. The structures are based on hierarchical conical structures with the different geometric parameter. It was observed that the fabricated surface has high apparent contact angle and low contact angle hysteresis. For that, bio-mimetic texturing of surface and silanization coating can be applied. In this study, hierarchical conical structures were fabricated. The shape of the structures has been inspired from the surface from nature. Moreover, the effect of the silanization coating on the surfaces which has different geometric parameter has been identified.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实现高表观接触角和低接触角迟滞是应用自清洁特性的主要实现步骤。在这项工作中,仿生启发结构补充了硅烷化涂层,用于开发具有高表观接触角和低接触角滞后的表面。该结构基于不同几何参数的分层圆锥结构。结果表明,所制备的表面具有较高的视接触角和较低的接触角滞后。为此,可以采用表面仿生织构和硅烷化涂层。在本研究中,制作了分层锥形结构。建筑的形状受到了大自然表面的启发。此外,还确定了硅化涂层对不同几何参数表面的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling the Wetting State With Bio-Mimetic Hierarchical Conical Microstructures
Achieving a high apparent contact angle with a low contact angle hysteresis represent a major enabling step in applications by the self-cleaning property. In this work, bio-mimetic inspired structures complemented with silanization coating are presented for developing surfaces with a high apparent contact angle with a low contact angle hysteresis. The structures are based on hierarchical conical structures with the different geometric parameter. It was observed that the fabricated surface has high apparent contact angle and low contact angle hysteresis. For that, bio-mimetic texturing of surface and silanization coating can be applied. In this study, hierarchical conical structures were fabricated. The shape of the structures has been inspired from the surface from nature. Moreover, the effect of the silanization coating on the surfaces which has different geometric parameter has been identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信