基于TESBCC和音高特征的无监督说话人分割和聚类

J. Naresh, R. S. Holambe, T. Basu
{"title":"基于TESBCC和音高特征的无监督说话人分割和聚类","authors":"J. Naresh, R. S. Holambe, T. Basu","doi":"10.1109/CICN.2013.142","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of unsupervised speaker segmentation and clustering system. Main objective of the work presented in this paper is to study the performance of speaker diarization system using a new feature-set called Temporal Energy of Subband Cepstral Coefficients (TESBCC) and Pitch based features. The system first classifies the audio signal into speech and nonspeech signal using average zero crossing rate (ZCR), followed by a gender clssifier stage. Speaker change is first roughly detected using Hotelling T2 distance metric and then the Bayesian information criterion (BIC) is used to validate the potential speaker change point to reduce the false alarm rate. The bottom-up approach is used for speaker clustering. The performance of the speaker segmentation and clustering system using TESBCC is compared with that using MFCC.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Speaker Segmentation and Clustering Using TESBCC and Pitch Based Features\",\"authors\":\"J. Naresh, R. S. Holambe, T. Basu\",\"doi\":\"10.1109/CICN.2013.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation of unsupervised speaker segmentation and clustering system. Main objective of the work presented in this paper is to study the performance of speaker diarization system using a new feature-set called Temporal Energy of Subband Cepstral Coefficients (TESBCC) and Pitch based features. The system first classifies the audio signal into speech and nonspeech signal using average zero crossing rate (ZCR), followed by a gender clssifier stage. Speaker change is first roughly detected using Hotelling T2 distance metric and then the Bayesian information criterion (BIC) is used to validate the potential speaker change point to reduce the false alarm rate. The bottom-up approach is used for speaker clustering. The performance of the speaker segmentation and clustering system using TESBCC is compared with that using MFCC.\",\"PeriodicalId\":415274,\"journal\":{\"name\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2013.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了无监督说话人分词聚类系统的实现。本文的主要目的是利用一种新的子带倒谱系数时间能量(TESBCC)特征集和基于音高的特征来研究说话人偏振化系统的性能。该系统首先使用平均零交叉率(ZCR)将音频信号分为语音和非语音信号,然后进行性别分类阶段。首先使用Hotelling T2距离度量粗略检测说话人的变化,然后使用贝叶斯信息准则(BIC)对潜在的说话人变化点进行验证,以降低虚警率。说话人聚类采用自底向上的方法。比较了基于TESBCC的说话人分割聚类系统与基于MFCC的系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Speaker Segmentation and Clustering Using TESBCC and Pitch Based Features
This paper describes the implementation of unsupervised speaker segmentation and clustering system. Main objective of the work presented in this paper is to study the performance of speaker diarization system using a new feature-set called Temporal Energy of Subband Cepstral Coefficients (TESBCC) and Pitch based features. The system first classifies the audio signal into speech and nonspeech signal using average zero crossing rate (ZCR), followed by a gender clssifier stage. Speaker change is first roughly detected using Hotelling T2 distance metric and then the Bayesian information criterion (BIC) is used to validate the potential speaker change point to reduce the false alarm rate. The bottom-up approach is used for speaker clustering. The performance of the speaker segmentation and clustering system using TESBCC is compared with that using MFCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信