基于机器视觉的植保设备喷嘴检测技术

Liu Yuan-yuan, Xu Lin-lin, Wang Yue-yong, Gong He
{"title":"基于机器视觉的植保设备喷嘴检测技术","authors":"Liu Yuan-yuan, Xu Lin-lin, Wang Yue-yong, Gong He","doi":"10.1109/ICAM.2016.7813628","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method of using machine vision technology to detect the nozzle of plant protection equipment through two spray variables (spray angle and spray volume distribution area), which provides a good experimental direction to improve the performance of the nozzle of plant protection equipment. Firstly, we get the images information with different backgrounds and shooting angles. Secondly, we process the images by edge detection, mathematical morphology and other related digital image processing techniques. Thirdly, we obtain the target area of spray angle and fog quantity distribution using the Hough transform line detection algorithm and pixel method. Finally, we compare the area and angle with the reference values to judge the rationality of the method and establish the error range. Experimental results show that the feature variable values are ideal for plant protection equipment nozzle spray angle and spray volume distribution area. It is proved that the feasibility of our method.","PeriodicalId":179100,"journal":{"name":"2016 International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection technology of plant protection equipment nozzle based on machine vision\",\"authors\":\"Liu Yuan-yuan, Xu Lin-lin, Wang Yue-yong, Gong He\",\"doi\":\"10.1109/ICAM.2016.7813628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a method of using machine vision technology to detect the nozzle of plant protection equipment through two spray variables (spray angle and spray volume distribution area), which provides a good experimental direction to improve the performance of the nozzle of plant protection equipment. Firstly, we get the images information with different backgrounds and shooting angles. Secondly, we process the images by edge detection, mathematical morphology and other related digital image processing techniques. Thirdly, we obtain the target area of spray angle and fog quantity distribution using the Hough transform line detection algorithm and pixel method. Finally, we compare the area and angle with the reference values to judge the rationality of the method and establish the error range. Experimental results show that the feature variable values are ideal for plant protection equipment nozzle spray angle and spray volume distribution area. It is proved that the feasibility of our method.\",\"PeriodicalId\":179100,\"journal\":{\"name\":\"2016 International Conference on Integrated Circuits and Microsystems (ICICM)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Integrated Circuits and Microsystems (ICICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAM.2016.7813628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAM.2016.7813628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用机器视觉技术通过两个喷雾变量(喷雾角度和喷雾体积分布面积)对植保设备喷嘴进行检测的方法,为提高植保设备喷嘴的性能提供了良好的实验方向。首先,获取不同背景和拍摄角度下的图像信息。其次,采用边缘检测、数学形态学等相关数字图像处理技术对图像进行处理。第三,利用霍夫变换线检测算法和像素法获得目标区域的喷雾角和雾量分布;最后将面积和角度与参考值进行比较,判断方法的合理性,建立误差范围。实验结果表明,该特征变量值对于植保设备喷嘴的喷淋角度和喷淋体积分布面积是理想的。实验证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection technology of plant protection equipment nozzle based on machine vision
In this paper, we present a method of using machine vision technology to detect the nozzle of plant protection equipment through two spray variables (spray angle and spray volume distribution area), which provides a good experimental direction to improve the performance of the nozzle of plant protection equipment. Firstly, we get the images information with different backgrounds and shooting angles. Secondly, we process the images by edge detection, mathematical morphology and other related digital image processing techniques. Thirdly, we obtain the target area of spray angle and fog quantity distribution using the Hough transform line detection algorithm and pixel method. Finally, we compare the area and angle with the reference values to judge the rationality of the method and establish the error range. Experimental results show that the feature variable values are ideal for plant protection equipment nozzle spray angle and spray volume distribution area. It is proved that the feasibility of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信