{"title":"使用Õ(n^{3/4})自适应查询进行布尔一致性测试","authors":"Xi Chen, Erik Waingarten, Jinyu Xie","doi":"10.1109/FOCS.2017.85","DOIUrl":null,"url":null,"abstract":"We give an adaptive algorithm that tests whether an unknown Boolean function f: {0,1}^n -≈ {0, 1} is unate (i.e. every variable of f is either non-decreasing or non-increasing) or ≥-far from unate with one-sided error and O(n^{3/4}/≥^2) many queries. This improves on the best adaptive O(n/≥)-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri when 1/ε","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Boolean Unateness Testing with Õ(n^{3/4}) Adaptive Queries\",\"authors\":\"Xi Chen, Erik Waingarten, Jinyu Xie\",\"doi\":\"10.1109/FOCS.2017.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an adaptive algorithm that tests whether an unknown Boolean function f: {0,1}^n -≈ {0, 1} is unate (i.e. every variable of f is either non-decreasing or non-increasing) or ≥-far from unate with one-sided error and O(n^{3/4}/≥^2) many queries. This improves on the best adaptive O(n/≥)-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri when 1/ε\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boolean Unateness Testing with Õ(n^{3/4}) Adaptive Queries
We give an adaptive algorithm that tests whether an unknown Boolean function f: {0,1}^n -≈ {0, 1} is unate (i.e. every variable of f is either non-decreasing or non-increasing) or ≥-far from unate with one-sided error and O(n^{3/4}/≥^2) many queries. This improves on the best adaptive O(n/≥)-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri when 1/ε