通过流水线、并行通信树实现MIMD神经网络

P. Wohl, T. Christopher
{"title":"通过流水线、并行通信树实现MIMD神经网络","authors":"P. Wohl, T. Christopher","doi":"10.1109/TAI.1991.167079","DOIUrl":null,"url":null,"abstract":"Hardware implementations and single-instruction-stream/multiple-data-stream (SIMD) simulations are relatively inflexible, while multiple-instruction-stream (MIMD) simulations often trade their flexibility for increased efficiency. An alternative technique is presented which is based on pipelining fewer but larger messages through parallel, broadcast/accumulate trees. This method exploits both the structural parallelism of neural networks and the data parallelism of neural algorithms. The mapping is flexible to changes in the network architecture and learning algorithm and is suited to a variety of computer configurations. Experimental results show a higher efficiency than similar implementation.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MIMD implementation of neural networks through pipelined, parallel communication trees\",\"authors\":\"P. Wohl, T. Christopher\",\"doi\":\"10.1109/TAI.1991.167079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware implementations and single-instruction-stream/multiple-data-stream (SIMD) simulations are relatively inflexible, while multiple-instruction-stream (MIMD) simulations often trade their flexibility for increased efficiency. An alternative technique is presented which is based on pipelining fewer but larger messages through parallel, broadcast/accumulate trees. This method exploits both the structural parallelism of neural networks and the data parallelism of neural algorithms. The mapping is flexible to changes in the network architecture and learning algorithm and is suited to a variety of computer configurations. Experimental results show a higher efficiency than similar implementation.<<ETX>>\",\"PeriodicalId\":371778,\"journal\":{\"name\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1991.167079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

硬件实现和单指令流/多数据流(SIMD)模拟相对不灵活,而多指令流(MIMD)模拟通常以灵活性换取更高的效率。提出了一种基于并行、广播/累积树的少而大的消息管道的替代技术。该方法利用了神经网络的结构并行性和神经算法的数据并行性。这种映射可以灵活地适应网络体系结构和学习算法的变化,并且适用于各种计算机配置。实验结果表明,该方法比同类方法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIMD implementation of neural networks through pipelined, parallel communication trees
Hardware implementations and single-instruction-stream/multiple-data-stream (SIMD) simulations are relatively inflexible, while multiple-instruction-stream (MIMD) simulations often trade their flexibility for increased efficiency. An alternative technique is presented which is based on pipelining fewer but larger messages through parallel, broadcast/accumulate trees. This method exploits both the structural parallelism of neural networks and the data parallelism of neural algorithms. The mapping is flexible to changes in the network architecture and learning algorithm and is suited to a variety of computer configurations. Experimental results show a higher efficiency than similar implementation.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信