大数据的ABCDE:评估开发评估呼叫详细记录中的偏差

G. Pestre, E. Letouzé, E. Zagheni
{"title":"大数据的ABCDE:评估开发评估呼叫详细记录中的偏差","authors":"G. Pestre, E. Letouzé, E. Zagheni","doi":"10.1093/wber/lhz039","DOIUrl":null,"url":null,"abstract":"This article contributes to improving our understanding of biases in estimates of demographic indicators, in the developing world, based on Call Detail Records (CDRs). CDRs represent an important and largely untapped source of data for the developing world. However, they are not representative of the underlying population. We combine CDRs and census data for Senegal in 2013 to evaluate biases related to estimates of population density. We show that: (i) there are systematic relationships between cell-phone use and socio-economic and geographic characteristics that can be leveraged to improve estimates of population density; (ii) when no ‘ground truth’ data is available, a difference-in-difference approach can be used to reduce bias and infer relative changes over time in population size at the subnational level; (iii) indicators of development, including urbanization and internal, circular, and temporary migration, can be monitored by integrating census data and CDRs. The paper is intended to offer a methodological contribution and examples of applications related to combining new and traditional data sources to improve our ability to monitor development indicators over time and space.","PeriodicalId":361118,"journal":{"name":"The World Bank Economic Review","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The ABCDE of Big Data: Assessing Biases in Call-Detail Records for Development Estimates\",\"authors\":\"G. Pestre, E. Letouzé, E. Zagheni\",\"doi\":\"10.1093/wber/lhz039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article contributes to improving our understanding of biases in estimates of demographic indicators, in the developing world, based on Call Detail Records (CDRs). CDRs represent an important and largely untapped source of data for the developing world. However, they are not representative of the underlying population. We combine CDRs and census data for Senegal in 2013 to evaluate biases related to estimates of population density. We show that: (i) there are systematic relationships between cell-phone use and socio-economic and geographic characteristics that can be leveraged to improve estimates of population density; (ii) when no ‘ground truth’ data is available, a difference-in-difference approach can be used to reduce bias and infer relative changes over time in population size at the subnational level; (iii) indicators of development, including urbanization and internal, circular, and temporary migration, can be monitored by integrating census data and CDRs. The paper is intended to offer a methodological contribution and examples of applications related to combining new and traditional data sources to improve our ability to monitor development indicators over time and space.\",\"PeriodicalId\":361118,\"journal\":{\"name\":\"The World Bank Economic Review\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Bank Economic Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/wber/lhz039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Bank Economic Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/wber/lhz039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文有助于提高我们对发展中国家基于呼叫详细记录(cdr)估算人口指标偏差的理解。对发展中国家来说,cdr是一个重要的、基本上尚未开发的数据来源。然而,他们并不能代表潜在的人口。我们将cdr和2013年塞内加尔的人口普查数据结合起来,评估与人口密度估计相关的偏差。我们表明:(1)手机使用与社会经济和地理特征之间存在系统关系,可以用来改善人口密度的估计;(ii)当没有“基本事实”数据可用时,可以使用差异中的差异方法来减少偏差并推断次国家一级人口规模随时间的相对变化;(三)发展指标,包括城市化和内部、循环和临时移徙,可通过综合普查数据和cdr加以监测。本文旨在提供一种方法上的贡献,并举例说明如何将新的和传统的数据来源结合起来,以提高我们在时间和空间上监测发展指标的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ABCDE of Big Data: Assessing Biases in Call-Detail Records for Development Estimates
This article contributes to improving our understanding of biases in estimates of demographic indicators, in the developing world, based on Call Detail Records (CDRs). CDRs represent an important and largely untapped source of data for the developing world. However, they are not representative of the underlying population. We combine CDRs and census data for Senegal in 2013 to evaluate biases related to estimates of population density. We show that: (i) there are systematic relationships between cell-phone use and socio-economic and geographic characteristics that can be leveraged to improve estimates of population density; (ii) when no ‘ground truth’ data is available, a difference-in-difference approach can be used to reduce bias and infer relative changes over time in population size at the subnational level; (iii) indicators of development, including urbanization and internal, circular, and temporary migration, can be monitored by integrating census data and CDRs. The paper is intended to offer a methodological contribution and examples of applications related to combining new and traditional data sources to improve our ability to monitor development indicators over time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信