基于Pareto法的差分进化算法考虑双偶然性相量测量单元的定位

S. M. Nosratabadi, J. Modarresi
{"title":"基于Pareto法的差分进化算法考虑双偶然性相量测量单元的定位","authors":"S. M. Nosratabadi, J. Modarresi","doi":"10.1109/SGC.2017.8308885","DOIUrl":null,"url":null,"abstract":"This paper suggests a methodology for Phasor Measurement Units (PMUs) optimum placement for State Estimation (SE) with regard to double contingency. Firstly, SE problem is converted into the optimization one where the fitness function is the number of unobservable nodes that is specified on the basis of Singular Value Decomposition (SVD). In the regular condition, Differential Evolution (DE) method is utilized to discover the optimum PMUs placement. According to uncertain events, a multi-objective problem is hence performed. Here, to attain this, DE method on the basis of Pareto optimum procedure is proposed. The proposed methodology is employed for the IEEE 30-bus test system considering several cases and results are prepared to assess the optimum PMUs places.","PeriodicalId":346749,"journal":{"name":"2017 Smart Grid Conference (SGC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phasor measurement units placement considering double contingency by differential evolution algorithm based on Pareto method\",\"authors\":\"S. M. Nosratabadi, J. Modarresi\",\"doi\":\"10.1109/SGC.2017.8308885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper suggests a methodology for Phasor Measurement Units (PMUs) optimum placement for State Estimation (SE) with regard to double contingency. Firstly, SE problem is converted into the optimization one where the fitness function is the number of unobservable nodes that is specified on the basis of Singular Value Decomposition (SVD). In the regular condition, Differential Evolution (DE) method is utilized to discover the optimum PMUs placement. According to uncertain events, a multi-objective problem is hence performed. Here, to attain this, DE method on the basis of Pareto optimum procedure is proposed. The proposed methodology is employed for the IEEE 30-bus test system considering several cases and results are prepared to assess the optimum PMUs places.\",\"PeriodicalId\":346749,\"journal\":{\"name\":\"2017 Smart Grid Conference (SGC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Smart Grid Conference (SGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGC.2017.8308885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Smart Grid Conference (SGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGC.2017.8308885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种双事件状态估计中相量测量单元(PMUs)的优化配置方法。首先将SE问题转化为优化问题,其中适应度函数是基于奇异值分解(SVD)指定的不可观测节点数。在规则条件下,采用差分进化方法寻找pmu的最佳布局。根据不确定事件,求解多目标问题。为此,提出了基于Pareto最优过程的DE方法。将所提出的方法应用于IEEE 30总线测试系统中,并结合多个实例给出了评估最佳pmu位置的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phasor measurement units placement considering double contingency by differential evolution algorithm based on Pareto method
This paper suggests a methodology for Phasor Measurement Units (PMUs) optimum placement for State Estimation (SE) with regard to double contingency. Firstly, SE problem is converted into the optimization one where the fitness function is the number of unobservable nodes that is specified on the basis of Singular Value Decomposition (SVD). In the regular condition, Differential Evolution (DE) method is utilized to discover the optimum PMUs placement. According to uncertain events, a multi-objective problem is hence performed. Here, to attain this, DE method on the basis of Pareto optimum procedure is proposed. The proposed methodology is employed for the IEEE 30-bus test system considering several cases and results are prepared to assess the optimum PMUs places.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信