{"title":"网络集群并行仿真的自适应同步技术","authors":"Ayose Falcón, P. Faraboschi, Daniel Ortega","doi":"10.1109/ISPASS.2008.4510735","DOIUrl":null,"url":null,"abstract":"Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic \"ground truth\" simulation, at less than a 1% accuracy error.","PeriodicalId":137239,"journal":{"name":"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"An Adaptive Synchronization Technique for Parallel Simulation of Networked Clusters\",\"authors\":\"Ayose Falcón, P. Faraboschi, Daniel Ortega\",\"doi\":\"10.1109/ISPASS.2008.4510735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic \\\"ground truth\\\" simulation, at less than a 1% accuracy error.\",\"PeriodicalId\":137239,\"journal\":{\"name\":\"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2008.4510735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2008.4510735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptive Synchronization Technique for Parallel Simulation of Networked Clusters
Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic "ground truth" simulation, at less than a 1% accuracy error.