平行机械臂的奇异性:一种几何处理

Guanfeng Liu, Y. Lou, Zexiang Li
{"title":"平行机械臂的奇异性:一种几何处理","authors":"Guanfeng Liu, Y. Lou, Zexiang Li","doi":"10.1109/TRA.2003.814507","DOIUrl":null,"url":null,"abstract":"A parallel manipulator is naturally associated with a set of constraint functions defined by its closure constraints. The differential forms arising from these constraint functions completely characterize the geometric properties of the manipulator. In this paper, using the language of differential forms, we provide a thorough geometric study on the various types of singularities of a parallel manipulator, their relations with the kinematic parameters and the configuration spaces of the manipulator, and the role redundant actuation plays in reshaping the singularities and improving the performance of the manipulator. First, we analyze configuration space singularities by constructing a Morse function on some appropriately defined spaces. By varying key parameters of the manipulator, we obtain homotopic classes of the configuration spaces. This allows us to gain insight on configuration space singularities and understand how to choose design parameters for the manipulator. Second, we define parametrization singularities which include actuator and end-effector singularities (or other equivalent definitions) as their special cases. This definition naturally contains the closure constraints in addition to the coordinates of the actuators and the end-effector and can be used to search a complete set of actuator or end-effector singularities including some singularities that may be missed by the usual kinematics methods. We give an intrinsic classification of parametrization singularities and define their topological orders. While a nondegenerate singularity poses no problems in general, a degenerate singularity can sometimes be a source of danger and should be avoided if possible.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"Singularities of parallel manipulators: a geometric treatment\",\"authors\":\"Guanfeng Liu, Y. Lou, Zexiang Li\",\"doi\":\"10.1109/TRA.2003.814507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parallel manipulator is naturally associated with a set of constraint functions defined by its closure constraints. The differential forms arising from these constraint functions completely characterize the geometric properties of the manipulator. In this paper, using the language of differential forms, we provide a thorough geometric study on the various types of singularities of a parallel manipulator, their relations with the kinematic parameters and the configuration spaces of the manipulator, and the role redundant actuation plays in reshaping the singularities and improving the performance of the manipulator. First, we analyze configuration space singularities by constructing a Morse function on some appropriately defined spaces. By varying key parameters of the manipulator, we obtain homotopic classes of the configuration spaces. This allows us to gain insight on configuration space singularities and understand how to choose design parameters for the manipulator. Second, we define parametrization singularities which include actuator and end-effector singularities (or other equivalent definitions) as their special cases. This definition naturally contains the closure constraints in addition to the coordinates of the actuators and the end-effector and can be used to search a complete set of actuator or end-effector singularities including some singularities that may be missed by the usual kinematics methods. We give an intrinsic classification of parametrization singularities and define their topological orders. While a nondegenerate singularity poses no problems in general, a degenerate singularity can sometimes be a source of danger and should be avoided if possible.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.814507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.814507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

摘要

一个并行操纵器自然地与一组由其闭包约束定义的约束函数相关联。由这些约束函数产生的微分形式完全表征了机械臂的几何特性。本文利用微分形式的语言,对并联机械臂的各种奇异点及其与运动学参数和构型空间的关系,以及冗余驱动在奇异点重塑和机械臂性能改善中的作用进行了深入的几何研究。首先,我们通过在适当定义的空间上构造莫尔斯函数来分析组态空间奇异性。通过改变机械手的关键参数,得到构型空间的同伦类。这使我们能够深入了解构型空间奇点,并了解如何为机械手选择设计参数。其次,我们定义了参数化奇异点,其中包括执行器和末端执行器的奇异点(或其他等效定义)作为它们的特殊情况。该定义除了包含执行器和末端执行器的坐标外,还包含闭合约束,并可用于搜索执行器或末端执行器的一整套奇异点,其中包括通常运动学方法可能忽略的一些奇异点。给出了参数化奇异点的固有分类,并定义了它们的拓扑阶数。虽然一般来说,非简并奇点不会造成问题,但简并奇点有时会成为危险的来源,应该尽可能避免。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularities of parallel manipulators: a geometric treatment
A parallel manipulator is naturally associated with a set of constraint functions defined by its closure constraints. The differential forms arising from these constraint functions completely characterize the geometric properties of the manipulator. In this paper, using the language of differential forms, we provide a thorough geometric study on the various types of singularities of a parallel manipulator, their relations with the kinematic parameters and the configuration spaces of the manipulator, and the role redundant actuation plays in reshaping the singularities and improving the performance of the manipulator. First, we analyze configuration space singularities by constructing a Morse function on some appropriately defined spaces. By varying key parameters of the manipulator, we obtain homotopic classes of the configuration spaces. This allows us to gain insight on configuration space singularities and understand how to choose design parameters for the manipulator. Second, we define parametrization singularities which include actuator and end-effector singularities (or other equivalent definitions) as their special cases. This definition naturally contains the closure constraints in addition to the coordinates of the actuators and the end-effector and can be used to search a complete set of actuator or end-effector singularities including some singularities that may be missed by the usual kinematics methods. We give an intrinsic classification of parametrization singularities and define their topological orders. While a nondegenerate singularity poses no problems in general, a degenerate singularity can sometimes be a source of danger and should be avoided if possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信