使用带有自适应控制的DE算法训练RBF网络

Junhong Liu, J. Mattila, J. Lampinen
{"title":"使用带有自适应控制的DE算法训练RBF网络","authors":"Junhong Liu, J. Mattila, J. Lampinen","doi":"10.1109/ICTAI.2005.123","DOIUrl":null,"url":null,"abstract":"This paper concerns the application of differential evolution to training radial basis function networks. The algorithm consists of initial tuning, local tuning, and global tuning. The last two tunings both use a cycle-increased searching scheme, and global tuning employs fuzzy adaptive control. The mean square error from desired to actual outputs is applied as the objective function. Four standard test functions is used for demonstration. A comparison of net performances with two approaches reported in the literature shows the resulting network performs better in terms of a lower mean square error with a smaller network","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Training RBF networks using a DE algorithm with adaptive control\",\"authors\":\"Junhong Liu, J. Mattila, J. Lampinen\",\"doi\":\"10.1109/ICTAI.2005.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the application of differential evolution to training radial basis function networks. The algorithm consists of initial tuning, local tuning, and global tuning. The last two tunings both use a cycle-increased searching scheme, and global tuning employs fuzzy adaptive control. The mean square error from desired to actual outputs is applied as the objective function. Four standard test functions is used for demonstration. A comparison of net performances with two approaches reported in the literature shows the resulting network performs better in terms of a lower mean square error with a smaller network\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了差分进化在径向基函数网络训练中的应用。该算法包括初始调优、局部调优和全局调优。后两种整定方法均采用周期增加搜索方案,全局整定采用模糊自适应控制。期望输出到实际输出的均方误差作为目标函数。四个标准测试函数用于演示。网络性能与文献中报道的两种方法的比较表明,就较小的网络具有较低的均方误差而言,所得到的网络性能更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training RBF networks using a DE algorithm with adaptive control
This paper concerns the application of differential evolution to training radial basis function networks. The algorithm consists of initial tuning, local tuning, and global tuning. The last two tunings both use a cycle-increased searching scheme, and global tuning employs fuzzy adaptive control. The mean square error from desired to actual outputs is applied as the objective function. Four standard test functions is used for demonstration. A comparison of net performances with two approaches reported in the literature shows the resulting network performs better in terms of a lower mean square error with a smaller network
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信