D. V. D. Silva, R. Prudêncio, C. Ferraz, Alysson Bispo, T. Prota
{"title":"跨领域推荐系统的上下文感知技术","authors":"D. V. D. Silva, R. Prudêncio, C. Ferraz, Alysson Bispo, T. Prota","doi":"10.1109/BRACIS.2015.42","DOIUrl":null,"url":null,"abstract":"In the last few years, cross-domain recommender systems emerged in order to improve and alleviate problems of single-domain recommender systems. Despite the great number of cross-domain recommender system approaches, there is a lack of studies concerned about the use of contextual features in cross domain recommender systems. The context-aware approach uses different contextual information (e.g., Location, time, and mood) in order to improve recommendations, where context can be treated as a bridge between different domains. In this paper, we investigate the adoption of two context-aware approaches in a cross-domain recommender system in order to improve its recommendation accuracy. For that, we describe the context aware cross-domain recommendation problem and the proposed context-aware algorithms. An experimental evaluation performed using a real dataset indicates that context-aware techniques can be a good approach in order to improve the cross-domain recommendation accuracy.","PeriodicalId":416771,"journal":{"name":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Context-Aware Techniques for Cross-Domain Recommender Systems\",\"authors\":\"D. V. D. Silva, R. Prudêncio, C. Ferraz, Alysson Bispo, T. Prota\",\"doi\":\"10.1109/BRACIS.2015.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years, cross-domain recommender systems emerged in order to improve and alleviate problems of single-domain recommender systems. Despite the great number of cross-domain recommender system approaches, there is a lack of studies concerned about the use of contextual features in cross domain recommender systems. The context-aware approach uses different contextual information (e.g., Location, time, and mood) in order to improve recommendations, where context can be treated as a bridge between different domains. In this paper, we investigate the adoption of two context-aware approaches in a cross-domain recommender system in order to improve its recommendation accuracy. For that, we describe the context aware cross-domain recommendation problem and the proposed context-aware algorithms. An experimental evaluation performed using a real dataset indicates that context-aware techniques can be a good approach in order to improve the cross-domain recommendation accuracy.\",\"PeriodicalId\":416771,\"journal\":{\"name\":\"2015 Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2015.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2015.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-Aware Techniques for Cross-Domain Recommender Systems
In the last few years, cross-domain recommender systems emerged in order to improve and alleviate problems of single-domain recommender systems. Despite the great number of cross-domain recommender system approaches, there is a lack of studies concerned about the use of contextual features in cross domain recommender systems. The context-aware approach uses different contextual information (e.g., Location, time, and mood) in order to improve recommendations, where context can be treated as a bridge between different domains. In this paper, we investigate the adoption of two context-aware approaches in a cross-domain recommender system in order to improve its recommendation accuracy. For that, we describe the context aware cross-domain recommendation problem and the proposed context-aware algorithms. An experimental evaluation performed using a real dataset indicates that context-aware techniques can be a good approach in order to improve the cross-domain recommendation accuracy.