在R3中计算平面、球体和圆柱体的Voronoi单元

Iddo Hanniel, G. Elber
{"title":"在R3中计算平面、球体和圆柱体的Voronoi单元","authors":"Iddo Hanniel, G. Elber","doi":"10.1145/1364901.1364911","DOIUrl":null,"url":null,"abstract":"We present an algorithm for computing the Voronoi cell for a set of planes, spheres and cylinders in R3. The algorithm is based on a lower envelope computation of the bisector surfaces between these primitives, and the projection of the trisector curves onto planes bounding the object for which the Voronoi cell is computed, denoted the base object. We analyze the different bisectors and trisectors that can occur in the computation. Our analysis shows that most of the bisector surfaces are quadric surfaces and five of the ten possible trisectors are conic section curves. We have implemented our algorithm using the IRIT library and the CGAL 3D lower envelope package. All presented results are from our implementation.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Computing the Voronoi cells of planes, spheres and cylinders in R3\",\"authors\":\"Iddo Hanniel, G. Elber\",\"doi\":\"10.1145/1364901.1364911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for computing the Voronoi cell for a set of planes, spheres and cylinders in R3. The algorithm is based on a lower envelope computation of the bisector surfaces between these primitives, and the projection of the trisector curves onto planes bounding the object for which the Voronoi cell is computed, denoted the base object. We analyze the different bisectors and trisectors that can occur in the computation. Our analysis shows that most of the bisector surfaces are quadric surfaces and five of the ten possible trisectors are conic section curves. We have implemented our algorithm using the IRIT library and the CGAL 3D lower envelope package. All presented results are from our implementation.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1364901.1364911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种计算平面、球体和圆柱体的Voronoi单元的算法。该算法基于这些原语之间的平分线表面的下包络计算,以及将三分线曲线投影到计算Voronoi单元的对象的平面上,即基对象。我们分析了在计算中可能出现的不同的等分线和三等分线。我们的分析表明,大多数平分线曲面是二次曲面,10个可能的三分线曲面中有5个是圆锥截面曲线。我们使用IRIT库和CGAL 3D下信封包实现了我们的算法。所有呈现的结果都来自于我们的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the Voronoi cells of planes, spheres and cylinders in R3
We present an algorithm for computing the Voronoi cell for a set of planes, spheres and cylinders in R3. The algorithm is based on a lower envelope computation of the bisector surfaces between these primitives, and the projection of the trisector curves onto planes bounding the object for which the Voronoi cell is computed, denoted the base object. We analyze the different bisectors and trisectors that can occur in the computation. Our analysis shows that most of the bisector surfaces are quadric surfaces and five of the ten possible trisectors are conic section curves. We have implemented our algorithm using the IRIT library and the CGAL 3D lower envelope package. All presented results are from our implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信