基于深度强化学习的智能交通控制系统

A. R, M. Krishnan, Akshay Kekuda
{"title":"基于深度强化学习的智能交通控制系统","authors":"A. R, M. Krishnan, Akshay Kekuda","doi":"10.1109/ICITIIT54346.2022.9744226","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep reinforcement learning based traffic signal controller. We use the recently developed Distributional Reinforcement Learning with Quantile Regression (QR-DQN) algorithm to design a risk-sensitive approach to traffic signal control. A neural network is used to estimate the value distribution of state-action pairs. A novel control policy that gives variable weightage to the risk of an action depending on the congestion state of the system, effectively minimizes congestion in the network. Our results show that our algorithm outperforms conventional approaches and also classic RL based ones.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Traffic Control System using Deep Reinforcement Learning\",\"authors\":\"A. R, M. Krishnan, Akshay Kekuda\",\"doi\":\"10.1109/ICITIIT54346.2022.9744226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a deep reinforcement learning based traffic signal controller. We use the recently developed Distributional Reinforcement Learning with Quantile Regression (QR-DQN) algorithm to design a risk-sensitive approach to traffic signal control. A neural network is used to estimate the value distribution of state-action pairs. A novel control policy that gives variable weightage to the risk of an action depending on the congestion state of the system, effectively minimizes congestion in the network. Our results show that our algorithm outperforms conventional approaches and also classic RL based ones.\",\"PeriodicalId\":184353,\"journal\":{\"name\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT54346.2022.9744226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于深度强化学习的交通信号控制器。我们使用最近发展的分布式强化学习与分位数回归(QR-DQN)算法来设计一种风险敏感的交通信号控制方法。利用神经网络估计状态-动作对的值分布。一种新颖的控制策略,根据系统的拥塞状态对动作的风险赋予可变权重,有效地减少了网络中的拥塞。我们的结果表明,我们的算法优于传统的方法,也优于经典的基于强化学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Traffic Control System using Deep Reinforcement Learning
In this paper, we propose a deep reinforcement learning based traffic signal controller. We use the recently developed Distributional Reinforcement Learning with Quantile Regression (QR-DQN) algorithm to design a risk-sensitive approach to traffic signal control. A neural network is used to estimate the value distribution of state-action pairs. A novel control policy that gives variable weightage to the risk of an action depending on the congestion state of the system, effectively minimizes congestion in the network. Our results show that our algorithm outperforms conventional approaches and also classic RL based ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信