用于监测飓风的立方体卫星编队

Pardhasai Chadalavada, A. Dutta
{"title":"用于监测飓风的立方体卫星编队","authors":"Pardhasai Chadalavada, A. Dutta","doi":"10.1109/AERO53065.2022.9843636","DOIUrl":null,"url":null,"abstract":"Recent technological advancements have enabled distributed sensing of major weather events such as hurricanes using CubeSats. This paper proposes three novel formation flying concepts of operations to improve the hurricane forecast accuracy by filling the current observation gaps. The first concept leverages the use of non-Dopplerized precipitation radars, while the second concept envisions the use of Dopplerized precipitation radars in formation. Both formation designs enable the collection of simultaneous multi-frequency data, with different constituent CubeSats operating at different frequencies. The third formation concept leverages the use of non-Dopplerized precipitation radars, each operating at a different frequency, flying in formation with a synthetic aperture radar (SAR) in a multi-static configuration. The paper presents the concepts of operations for each formation and conducts mission analysis for relevant operational needs. Specifically, we determine the safe (no collision) and efficient relative orbits designed by considering J2 perturbations for the proposed formation designs. Furthermore, we conduct a performance comparison, focusing on formation initialization as well as formation-keeping cost.","PeriodicalId":219988,"journal":{"name":"2022 IEEE Aerospace Conference (AERO)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CubeSat Formations for Monitoring Hurricanes\",\"authors\":\"Pardhasai Chadalavada, A. Dutta\",\"doi\":\"10.1109/AERO53065.2022.9843636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent technological advancements have enabled distributed sensing of major weather events such as hurricanes using CubeSats. This paper proposes three novel formation flying concepts of operations to improve the hurricane forecast accuracy by filling the current observation gaps. The first concept leverages the use of non-Dopplerized precipitation radars, while the second concept envisions the use of Dopplerized precipitation radars in formation. Both formation designs enable the collection of simultaneous multi-frequency data, with different constituent CubeSats operating at different frequencies. The third formation concept leverages the use of non-Dopplerized precipitation radars, each operating at a different frequency, flying in formation with a synthetic aperture radar (SAR) in a multi-static configuration. The paper presents the concepts of operations for each formation and conducts mission analysis for relevant operational needs. Specifically, we determine the safe (no collision) and efficient relative orbits designed by considering J2 perturbations for the proposed formation designs. Furthermore, we conduct a performance comparison, focusing on formation initialization as well as formation-keeping cost.\",\"PeriodicalId\":219988,\"journal\":{\"name\":\"2022 IEEE Aerospace Conference (AERO)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Aerospace Conference (AERO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO53065.2022.9843636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Aerospace Conference (AERO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO53065.2022.9843636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的技术进步使得使用立方体卫星对飓风等主要天气事件进行分布式传感成为可能。本文提出了三种新的编队飞行作战概念,以填补当前观测空白,提高飓风预报精度。第一个概念利用了非多普勒降水雷达的使用,而第二个概念设想了在信息中使用多普勒降水雷达。两种地层设计都可以同时收集多频数据,不同组成的立方体卫星在不同频率下工作。第三种编队概念利用了非多普勒降水雷达的使用,每个雷达都以不同的频率工作,在多静态配置下与合成孔径雷达(SAR)一起编队飞行。提出了各编队的作战概念,并对相关作战需求进行了任务分析。具体来说,我们通过考虑J2微扰来确定所设计的安全(无碰撞)和有效的相对轨道。此外,我们还进行了性能比较,重点关注地层初始化和地层保持成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CubeSat Formations for Monitoring Hurricanes
Recent technological advancements have enabled distributed sensing of major weather events such as hurricanes using CubeSats. This paper proposes three novel formation flying concepts of operations to improve the hurricane forecast accuracy by filling the current observation gaps. The first concept leverages the use of non-Dopplerized precipitation radars, while the second concept envisions the use of Dopplerized precipitation radars in formation. Both formation designs enable the collection of simultaneous multi-frequency data, with different constituent CubeSats operating at different frequencies. The third formation concept leverages the use of non-Dopplerized precipitation radars, each operating at a different frequency, flying in formation with a synthetic aperture radar (SAR) in a multi-static configuration. The paper presents the concepts of operations for each formation and conducts mission analysis for relevant operational needs. Specifically, we determine the safe (no collision) and efficient relative orbits designed by considering J2 perturbations for the proposed formation designs. Furthermore, we conduct a performance comparison, focusing on formation initialization as well as formation-keeping cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信