{"title":"人机通信与机器通信共存中的盲检测","authors":"Xiaoyan Kuai, Xiaojun Yuan, Wenjing Yan","doi":"10.1109/ICCT46805.2019.8947025","DOIUrl":null,"url":null,"abstract":"In this paper, we study joint device activity identification, channel estimation, and signal detection for the uplink transmission of a human-type communication (HTC) and machine-type communication (MTC) coexisted massive MIMO system. We first establish a probability model to characterize the crucial system features including channel sparsity of massive MIMO, signal sparsity of MTC packets, and sporadic access of MTC. With the probability model, we formulate a blind detection problem and establish a factor graph representation of the problem. Based on that, we develop a turbo message passing (TMP) algorithm involving affine sparse matrix factorization and service type identification. We show that our proposed blind detection algorithm significantly outperform their counterpart algorithms including the training-based algorithm.","PeriodicalId":306112,"journal":{"name":"2019 IEEE 19th International Conference on Communication Technology (ICCT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Detection in Coexistence of Human-Type and Machine-Type Communications\",\"authors\":\"Xiaoyan Kuai, Xiaojun Yuan, Wenjing Yan\",\"doi\":\"10.1109/ICCT46805.2019.8947025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study joint device activity identification, channel estimation, and signal detection for the uplink transmission of a human-type communication (HTC) and machine-type communication (MTC) coexisted massive MIMO system. We first establish a probability model to characterize the crucial system features including channel sparsity of massive MIMO, signal sparsity of MTC packets, and sporadic access of MTC. With the probability model, we formulate a blind detection problem and establish a factor graph representation of the problem. Based on that, we develop a turbo message passing (TMP) algorithm involving affine sparse matrix factorization and service type identification. We show that our proposed blind detection algorithm significantly outperform their counterpart algorithms including the training-based algorithm.\",\"PeriodicalId\":306112,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Communication Technology (ICCT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT46805.2019.8947025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT46805.2019.8947025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blind Detection in Coexistence of Human-Type and Machine-Type Communications
In this paper, we study joint device activity identification, channel estimation, and signal detection for the uplink transmission of a human-type communication (HTC) and machine-type communication (MTC) coexisted massive MIMO system. We first establish a probability model to characterize the crucial system features including channel sparsity of massive MIMO, signal sparsity of MTC packets, and sporadic access of MTC. With the probability model, we formulate a blind detection problem and establish a factor graph representation of the problem. Based on that, we develop a turbo message passing (TMP) algorithm involving affine sparse matrix factorization and service type identification. We show that our proposed blind detection algorithm significantly outperform their counterpart algorithms including the training-based algorithm.